首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Synthesis and Crystal Structures of α‐, β‐Ba3(PS4)2 and Ba3(PSe4)2 Ba3(PS4)2 and Ba3(PSe4)2 were prepared by heating mixtures of the elements at 800 °C for 25 h. Both compounds were investigated by single crystal X‐ray methods. The thiophosphate is dimorphic and undergoes a displacive phase transition at about 75 °C. Both modifications crystallize in new structure types. In the room temperature phase (α‐Ba3(PS4)2: P21/a; a = 11.649(3), b = 6.610(1), c = 17.299(2) Å, β = 90.26(3)°; Z = 4) three crystallographically independent Ba atoms are surrounded by ten sulfur atoms forming distorted polyhedra. The arrangement of the PS4 tetrahedra, isolated from each other, is comparable with the formation of the SO42? ions of β‐K2SO4. In β‐Ba3(PS4)2 (C2/m; a = 11.597(2), b = 6.727(1), c = 8.704(2) Å; β = 90.00(3)°; Z = 2) the PS4 tetrahedra are no more tilted along [001], but oriented parallel to each other inducing less distorted tetrahedra and polyhedra around the Ba atoms, respectively. Ba3(PSe4)2 (P21/a; a = 12.282(2), b = 6.906(1), c = 18.061(4) Å; β = 90.23(3)°; Z = 4) is isotypic to α‐Ba3(PS4)2 and no phase transition could be detected up to about 550 °C.  相似文献   

2.
The synthesis and crystal structure of novel trinuclear molybdenum cluster compound with somewhat “loose” coordination site {Mo33-S)(μ-S)3[S2P(OEt)2l4 ? P(C6H5)3} ? (0.86 CH2C12) have been reported. The cluster crystallizes in the space group with two molecules in a unit cell whose parameters are a=10.472(4), b=14.375(2), c=21.695(3)Å; α=74.04(1)°, β=76.50(2)°, γ=72.22 (2)°, V=2950Å3 and Do=1.693 g ? cm?3. On the basis of 4840 independent reflections with I≥2σ(I), the structure was solved by heavy atom method and Fourier method and refined by full-matrix least-squares techniques to a final R=0.058. The distances between Mo atoms in this cluster are 2.731(1), 2.748(1) and 2.753(1)Å respectively. The meat value of Mo—Mo bond lengths is slightly shorter than those in other trinuclear Mo clusters with “loosely coordinated” site. In addition, the PPh3 ligand is loosely coordinated to one Mo atom in direction opposite to the μ3-S with Mo—P bond length of 2.647(3)Å. This is different from the other structurally analogous clusters, in which the loosely coordinated ligand is trans to μ2-S. A summary of Mo—Mo and Mo—L bonding for such clusters is given.  相似文献   

3.
The title compound was prepared by the oxidation of MoCl3 in liquid phase. The crystal belongs to the orthorhombic system with space group D-Pmnb and unit cell parameters: a = 11.403 (1), b = 12.345 (2), c = 14.292 (2) Å; V = 2011.8 Å3; Z = 4, Dc = 2.396g/cm3. Altogether 2303 independent reflections were collected on a CAD-4 four-circle diffractometer with Mo radiation in range 2° ≤ θ ≤ 27°. The crystal structure was solved by heavy-atoms method and refined by full-matrix least-squares technique to final discrepancy factors R = 0.050 and Rw= 0.056 for 1513 reflections of I ≥ 3σ (I). The configuration of the cluster anion was characterized to be of the same Ml type structure as presented in the previous paper. The average bond lengths of Mo—Mo and Mo-(μ3-O) are 2.577 Å and 1.982 Å respectively. In addition, the effects of bridging atoms, other ligands and bond orders on Mo—Mo bonds are discussed briefly.  相似文献   

4.
In the crystals of the title compound, [CuCl2(C6H6ClN)2], the Cu atom lies on an inversion centre and is four‐coordinated by two pyridine N atoms and two Cl atoms in trans positions. The coordination geometry is square planar, with Cu—N and Cu—Cl distances of 1.986 (2) and 2.2536 (11) Å, respectively. The two pyridine rings are parallel, but twist from the CuN2Cl2 coordination plane by about 95° in the complex mol­ecule. There are three kinds of intermolecular C—H⃛Cl hydrogen bonds in the crystals. Two of these types generate two‐dimensional molecular networks, viewed in the direction of the a axis, and the other connects adjacent molecular networks.  相似文献   

5.
The blue copper complex compounds [Cu(phen)2(C6H8O4)] · 4.5 H2O ( 1 ) and [(Cu2(phen)2Cl2)(C6H8O4)] · 4 H2O ( 2 ) were synthesized from CuCl2, 1,10‐phenanthroline (phen) and adipic acid in CH3OH/H2O solutions. [Cu(phen)2‐ (C6H8O4)] complexes and hydrogen bonded H2O molecules form the crystal structure of ( 1 ) (P1 (no. 2), a = 10.086(2) Å, b = 11.470(2) Å, c = 16.523(3) Å, α = 99.80(1)°, β = 115.13(1)°, γ = 115.13(1)°, V = 1617.5(5) Å3, Z = 2). The Cu atoms are square‐pyramidally coordinated by four N atoms of the phen ligands and one O atom of the adipate anion (d(Cu–O) = 1.989 Å, d(Cu–N) = 2.032–2.040 Å, axial d(Cu–N) = 2.235 Å). π‐π stacking interactions between phen ligands are responsible for the formation of supramolecular assemblies of [Cu(phen)2(C6H8O4)] complex molecules into 1 D chains along [111]. The crystal structure of ( 2 ) shows polymeric [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains (P1 (no. 2), a = 7.013(1) Å, b = 10.376(1) Å, c = 11.372(3) Å, α = 73.64(1)°, β = 78.15(2)°, γ = 81.44(1)°, V = 773.5(2) Å3, Z = 1). The Cu atoms are fivefold coordinated by two Cl atoms, two N atoms of phen ligands and one O atom of the adipate anion, forming [CuCl2N2O] square pyramids with an axial Cl atom (d(Cu–O) = 1.958 Å, d(Cu–N) = 2.017–2.033 Å, d(Cu–Cl) = 2.281 Å; axial d(Cu–Cl) = 2.724 Å). Two square pyramids are condensed via the common Cl–Cl edge to centrosymmetric [Cu2Cl2N4O2] dimers, which are connected via the adipate anions to form the [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains. The supramolecular 3 D network results from π‐π stacking interactions between the chains. H2O molecules are located in tunnels.  相似文献   

6.
The title compound, [Cu2(C7H5O2)4(C7H10N2)2], is a crystallographically centrosymmetric binuclear complex, with Cu atoms [Cu...Cu = 2.6982 (4) Å] bridged by four benzoate ligands. Each of the Cu atoms in this bunuclear copper(II) acetate hydrate analogue is present in an approximately square‐pyramidal environment, with four O atoms in a plane and the pyridine N atom at the apical site. Selected geometric parameters are compared with values for related tetrabenzoate complexes of copper(II).  相似文献   

7.
In the crystal structure of the title compound, [Cu3Cl6(C4H6N4)4]n, there are three Cu atoms, six Cl atoms and four 2‐allyl­tetrazole ligands in the asymmetric unit. The polyhedron of one Cu atom adopts a flattened octahedral geometry, with two 2‐allyl­tetrazole ligands in the axial positions [Cu—N4 = 1.990 (2) and 1.991 (2) Å] and four Cl atoms in the equatorial positions [Cu—Cl = 2.4331 (9)–2.5426 (9) Å]. The polyhedra of the other two Cu atoms have a square‐pyramidal geometry, with three basal sites occupied by Cl atoms [Cu—Cl = 2.2487 (9)–2.3163 (8) and 2.2569 (9)–2.3034 (9) Å] and one basal site occupied by a 2‐allyl­tetrazole ligand [Cu—N4 = 2.028 (2) and 2.013 (2) Å]. A Cl atom lies in the apical position of either pyramid [Cu—Cl = 2.8360 (10) and 2.8046 (9) Å]. The possibility of including the tetrazole N3 atoms in the coordination sphere of the two Cu atoms is discussed. Neighbouring copper polyhedra share their edges with Cl atoms to form one‐dimensional polymeric chains running along the a axis.  相似文献   

8.
The three (O‐methyl)‐p‐ethoxyphenyldithiophosphonato triphenylphosphine complexes of copper, silver and gold, [(Ph3P)nM{S2P(OMe)C6H4OEt‐p}] (M = Cu, n = 2; M = Ag, Au, n = 1) investigated structurally by X‐ray diffraction exhibit remarkable structural differences. The copper compound is a four‐coordinate chelate monomer with Cu–S 2.4417(6) and 2.5048(6) Å; P–Cu–S 104.24(2)–114.01(2)°; Cu–S–P 82.49(3)° and 80.85(2)°. The silver compound is a cyclic dimer with bridging dithiophosphonato ligands and three‐coordinate silver atoms [Ag–S 2.5371(5) and 2.6867(5) Å; P–Ag–S 122.88(2)° and 122.17(2)°; Ag–S–P 89.32(2)° and 103.56(2)°]. The gold compound is monomeric with linear dicoordinate gold [Au–S 2.3218(6) Å; P–Au–S 177.72(2)°, Au–S–P 100.97(3)°].  相似文献   

9.
In the molecule of the title compound, [Cu(NO3)2(C6H6ClN)2], the Cu atom lies on an inversion centre and is six‐coordinated by two pyridine N atoms and four nitrate O atoms in trans positions. The nitrate acts as an unsymmetrical bidentate ligand. The coordination geometry is octahedral, with the Cu—N and the two Cu—O distances being 1.9939 (16), 2.0246 (16) and 2.4866 (19) Å, respectively. There are five types of C—H⋯O hydrogen bonds. Two of these generate two‐dimensional molecular networks in the direction of the a axis, and the others connect adjacent molecular networks.  相似文献   

10.
The stoichiometric reaction of copper(II) hydroxycarbonate, iminodiacetic acid (H2IDA = HN(CH2CO2H)2) and α‐picolinamide (pya) in water yields crystalline samples of (α‐picolinamide)(iminodiacetato)copper(II) dihydrate, [Cu(IDA)(pya)] · 2 H2O ( 1 ). The compound was characterised by thermal (TG analysis with FT‐IR study of the evolved gasses), spectral (IR, electronic and ESR spectra), magnetic and single crystal X‐ray diffraction methods. It crystallises in the triclinic system, space group P1, a = 8.8737(4), b = 10.23203(5), c = 15.7167(11) Å, α = 77.61(1)°, β = 103.89(1)°, γ = 80.32(1)°, Z = 4, final R1 = 0.056. The asymmetric unit contains two crystallographic independent molecules but chemically very similar ones. The CuII atom exhibits a square base pyramidal coordination (type 4 + 1). pya acts as N,O‐bidentate ligand supplying two among the four closest donor atoms of the metal [averaged bond distances (Å): Cu–N = 1.982(2), Cu–O(amide) = 1.972(2)]. IDA plays a N,O,O′‐terdentate chelating role [averaged bond distances (Å): Cu–N = 2.004(3), Cu–O = 1.941(2) and Cu–O = 2.242(2)]. The coordinating behaviour of pya in 1 is discussed on the basis of its N,O‐bidentate chelating role and the preference of the ‘Cu‐iminodiacetato' moiety [Cu(IDA)] to link the N‐heterocyclic donor of pya in trans versus the Cu–N(IDA) bond. Consistently the ligand pya is able to impose a fac‐chelating configuration to IDA one around the copper(II) as previously has been reported to mixed‐ligand complexes having a 1/1/2 CuII/IDA/N(heterocyclic) donor ratio or a closely related 1/1/1/1 CuII/IDA/N(heterocyclic)/N(aliphatic) one.  相似文献   

11.
The crystal structure of (hexafluoroacetylacetonato)(pivaloylacetonato)copper(II) has been determined. Crystal data for CuO4C13H14F6: a = 8.288(2) Å, b = 8.682(2) Å, c = 12.307(2) Å; α = 90.75(3)°, β = 94.29(3)°, γ = 106.60(3)°; V = 845.7(3) Å3, space group \(P\overline 1 \), Z = 2, dcalc = 1.617 g/cm3. The coordination polyhedron of the copper atom is formed by four oxygen atoms of two different β-diketonate ligands with Cu-O distances within 1.874–1.946 Å; the O-Cu-O bond angles are 94.8° and 90.6°. The complexes are united into centrosymmetrical “dimers” with Cu...Cu distances of 4.365 Å.  相似文献   

12.
[Cu(C12H8N2)(C4H4O4)(H2O)]2 · C4H6O4 was prepared by the reaction of succinic acid, CuCl2 · 2 H2O, 1,10‐phenanthroline (phen = C12H8N2), and Na2CO3 in a CH3OH–H2O solution. The crystal structure (triclinic, P 1 (no. 2), a = 7.493(1), b = 9.758(1), c = 13.517(1) Å; α = 68.89(1)°, β = 88.89(1)°, γ = 73.32(1)°, Z = 1, R = 0.0308, wR2 = 0.0799 for 3530 observed reflections (F ≥ 2σ(F ) out of 3946 unique reflections) consists of hydrogen bonded succinic acid molecules and succinato bridged 1 D zipperlike supramolecular [Cu(phen)(C4H4O4)2/2(H2O)]2 double chains based on 1 D π‐π stacking interactions between the chelating phen systems at distances of 3.71 Å and 3.79 Å. The Cu atoms are fivefold trigonal bipyramidally coordinated by two N atoms of the bidentate chelating phen ligand and three O atoms of one water molecule and two bidentate bridging succinate ligands. The water O atom and one phen N atom are at the apical positions (equatorial: d(Cu–O) = 1.945, 2.254(2) Å, d(Cu–N) = 2.034(2) Å; axial: d(Cu–O) = 1.971(2) Å, d(Cu–N) = 1.995 Å).  相似文献   

13.
A coordination compound of copper(II) valerate with nicotinamide, [CuL(C4H9COO)2]2 (I), has been synthesized, and its crystal structure has been determined by X-ray crystallography. The crystals of I are triclinic: a = 9.1245(9) Å, b = 9.8572(6) Å, c = 11.0944(9) Å, α = 73.51(1)°, β = 79.917(6)°, γ = 72.161(7)°, Z = 2, space group $P\bar 1$ . In the centrosymmetric binuclear molecule of I, the copper atoms (Cu...Cu′, 2.621 Å) are linked through four bidentate chelating valerate ligands (av., Cu-O 1.969 Å). The coordination polyhedron of the Cu atom is a tetragonal pyramid with the nitrogen atom of the pyridine ring in the apical position at a longer distance (Cu-N, 2.190 Å).  相似文献   

14.
The title compound, C36H44N6O4+·2Cl?·2ClO4?·0.132H2O, is shown to be protonated at all the pyridine N atoms; the two chloride ions are hydrogen bonded to three pyridine N atoms and to the phenolic O atom of the same cation [Cl?N = 3.045 (2)–3.131 (2) Å and Cl?O = 2.938 (2) Å], and the remaining pyridine N atom is hydrogen bonded to the phenolic O atom [N?O = 2.861 (2) Å]. The mean value of the C—N—C angle of the protonated pyridine rings is 123.4 (1)°, which is significantly larger than that found for unprotonated pyridine rings.  相似文献   

15.
The rate law for the demetallation of the title indium(III)-porphin complex in aqueous acidic thiocyanate media at 3.00M ionic strength was found to be of the form where [H4P2?] is the concentration of the diacid product formed, [InP]t is the total concentration of all forms of indium(III)-porphin complex present, and a and b are constants. The constant a is a pseudo-third-order rate constant with the value (0.057 ± 0.005)M?2 s?1 and b has the value 0.704M?2 at 50.5°C. If the mechanism for demetallation involves ringpuckering with the attachment of two H+ ions, then 1/b can be identified with the product K1K2 for the stepwise dissociation of two protons from two ring pyrrolic nitrogen atoms of H2InP?. In the sulfonated tetraphenylporphin used for these studies the ring pyrrolic nitrogen atoms seem to be the most probable sites for protonation. If this identification is correct, the value of 1.42 ± 0.13 found for the product K1K2 shows the enormous effect that the presence of the In3+ center has on the ionization constants of these two protons. That the kinetic studies show saturation effects with respect to proton addition to InP3? may result from the fact that In3+ sits about 0.6 Å above the porphin ring.  相似文献   

16.
In the title compound, [CuCl2(C11H15N3O2)], the CuII ion is five‐coordinated in a strongly distorted trigonal–bipyramidal arrangement, with the two methyl­oxime N atoms located in the apical positions, and the pyridine N and the Cl atoms located in the basal plane. The two axial Cu—N distances are almost equal (mean 2.098 Å) and are substantially longer than the equatorial Cu—N bond [1.9757 (15) Å]. It is observed that the N(oxime)—M—N(pyridine) bond angle for five‐membered chelate rings of 2,6‐diacetyl­pyridine dioxime complexes is inversely related to the magnitude of the M—N(pyridine) bond. The structure is stabilized by intra‐ and inter­molecular C—H⋯Cl hydrogen bonds which involve the methyl H atoms, except for one of the two acetyl­methyl groups.  相似文献   

17.
The structure of the bimetallic dimer complex [(η5-C5H5)2Re(H)CuI]2 has been investigated. The crystals are monoclinic: a = 16.070(4) Å, b = 7.788(2)Å, c = 17.439(5) Å; b = 96.62(2)°; the space group I2/a; z = 4. The bond between rhenium and copper atoms (2.60 Å) is of the donor-acceptor type; dimerization occurs by the way of formation of the double bridge CuI2Cu and the direct inter-metal bond CuCu(2.55 Å). The hydride hydrogen atom is the terminal one. The cyclopentadienyl rings form a bent sandwich with the angle between the ring centres and rhenium atom being equal to 158°. It is suggested that the CuCu inter-metal bonding takes place on account of the transition of the non-bonding d-electrons of copper atoms to a high-spin state.  相似文献   

18.
The crystal structure of Pt6Cl12 (β‐PtCl2) was redetermined ( ah = 13.126Å, ch = 8.666Å, Z = 3; arh = 8.110Å, α = 108.04°; 367 hkl, R = 0.032). As has been shown earlier, the structure is in principle a hierarchical variant of the cubic structure type of tungsten (bcc), which atoms are replaced by the hexameric Pt6Cl12 molecules. Due to the 60° rotation of the cuboctahedral clusters about one of the trigonal axes, the symmetry is reduced from to ( ). The molecule Pt6Cl12 shows the (trigonally elongated) structure of the classic M6X12 cluster compounds with (distorted) square‐planar PtCl4 fragments, however without metal‐metal bonds. The Pt atoms are shifted outside the Cl12 cuboctahedron by Δ = +0.046Å ( (Pt—Cl) = 2.315Å; (Pt—Pt) = 3.339Å). The scalar relativistic DFT calculations results in the full symmetry for the optimized structure of the isolated molecule with d(Pt—Cl) = 2.381Å, d(Pt—Pt) = 3.468Å and Δ = +0.072Å. The electron distribution of the Pt‐Pt antibonding HOMO exhibits an outwards‐directed asymmetry perpendicular to the PtCl4 fragments, that plays the decisive role for the cluster packing in the crystal. A comparative study of the Electron Localization Function with the hypothetical trans‐(Nb2Zr4)Cl12 molecule shows the distinct differences between Pt6Cl12 and clusters with metal‐metal bonding. Due to the characteristic electronic structure, the crystal structure of Pt6Cl12 in space group is an optimal one, which results from comparison with rhombohedral Zr6I12 and a cubic bcc arrangement.  相似文献   

19.
The structure of the title compound, [Cu(C6H7N)2{Ag(CN)2}2]n, is made up of neutral zigzag chains of [–NC–Ag–CN–Cu(4‐Mepy)2{Ag(CN)2}–NC–Ag–CN–] (4‐Mepy is 4‐methyl­pyridine). Neighbouring chains are linked by weak argentophilic interactions, with Ag?Ag distances of 3.2322 (12) Å. The Cu atom, which lies on a twofold rotation axis, is pentacoordinated by one monodentate Ag(CN)2? anion [Cu—N 1.985 (3) Å], the atoms of which lie on the same rotation axis, and by bridging di­cyano­argentate anions [2 × Cu—N 2.0827 (19) Å], with Ag atoms on inversion centres. The coordination polyhedron is completed by two 4‐Mepy mol­ecules [2 × Cu—N 2.038 (2) Å], which occupy the axial positions of a distorted trigonal bipyramid.  相似文献   

20.
trans-Bis-(4-phenyliminopentan-2-onato)Cu(II) (5), which is a phenyl-substituted ketoimine, was synthesized, and an X-ray study was performed for this compound. Crystal data for CuN2O2C22H24: a = 11.4557(3) Å, b = 26.6845(9) Å, c = 14.2976(5) Å, β = 113.2270(10)°; space group P21/n, Z = 8, d calc = 1.363 g/cm3, R = 0.033. The structure is molecular and built of isolated trans complexes. The central copper atom is surrounded by four atoms (2O+2N) with the average distances Cu-O 1.904(3) Å and Cu-N 1.962(3) Å. The polyhedron around the copper atom is a distorted tetrahedron; the average values of the O-Cu-O and N-Cu-N trans bond angles are 147(2)° and 150(2)°, respectively. The average value of the O-Cu-N angles is 94(1)°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号