首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow batteries (FBs) are one of the most promising stationary energy‐storage devices for storing renewable energy. However, commercial progress of FBs is limited by their high cost and low energy density. A neutral zinc–iron FB with very low cost and high energy density is presented. By using highly soluble FeCl2/ZnBr2 species, a charge energy density of 56.30 Wh L−1 can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe3+/Fe2+. The results indicated that an energy efficiency of 86.66 % can be obtained at 40 mA cm−2 and the battery can run stably for more than 100 cycles. Furthermore, a low‐cost porous membrane was employed to lower the capital cost to less than $ 50 per kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc–iron FB is a promising candidate for stationary energy‐storage applications.  相似文献   

2.
Chemical architectures with an ordered porous backbone and high charge transfer are significant for fiber‐shaped supercapacitors (FSCs). However, owing to the sluggish ion kinetic diffusion and storage in compacted fibers, achieving high energy density remains a challenge. An innovative magnetothermal microfluidic method is now proposed to design hierarchical carbon polyhedrons/holey graphene (CP/HG) core–shell microfibers. Owing to highly magnetothermal etching and microfluidic reactions, the CP/HG fibers maintain an open inner‐linked ionic pathway, large specific surface area, and moderate nitrogen active site, facilitating more rapid ionic dynamic transportation and accommodation. The CP/HG FSCs show an ultrahigh energy density (335.8 μWh cm?2) and large areal capacitance (2760 mF cm?2). A self‐powered endurance application with the integration of chip‐based FSCs is designed to profoundly drive the durable motions of an electric car and walking robot.  相似文献   

3.
We report a simple approach based on a chemical reduction method to synthesize aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long‐term stability and continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrode for capacitive energy storage, the MnO2 ink was printed onto commercially available A4 paper pretreated with multiwalled carbon nanotubes. The electrode exhibited a maximum specific capacitance of 1035 F g?1 (91.7 mF cm?2). Paper‐based symmetric and asymmetric capacitors were assembled, which gave a maximum specific energy density of 25.3 Wh kg?1 and a power density of 81 kW kg?1. The device could maintain a 98.9 % capacitance retention over 10 000 cycles at 4 A g?1. The MnO2 ink could be a versatile candidate for large‐scale production of flexible and printable electronic devices for energy storage and conversion.  相似文献   

4.
Energy storage devices, such as lithium‐ion batteries and supercapacitors, are required for the modern electronics. However, the intrinsic characteristics of low power densities in batteries and low energy densities in supercapacitors have limited their applications. How to simultaneously realize high energy and power densities in one device remains a challenge. Herein a fiber‐shaped hybrid energy‐storage device (FESD) formed by twisting three carbon nanotube hybrid fibers demonstrates both high energy and power densities. For the FESD, the energy density (50 mWh cm?3 or 90 Wh kg?1) many times higher than for other forms of supercapacitors and approximately 3 times that of thin‐film batteries; the power density (1 W cm?3 or 5970 W kg?1) is approximately 140 times of thin‐film lithium‐ion battery. The FESD is flexible, weaveable and wearable, which offers promising advantages in the modern electronics.  相似文献   

5.
The design of carbon‐based materials with a high mass density and large porosity has always been a challenging goal, since they fulfill the demands of next‐generation supercapacitors and other electrochemical devices. We report a new class of high‐density heteroatom‐doped porous carbon that can be used as an aqueous‐based supercapacitor material. The material was synthesized by an in situ dehalogenation reaction between a halogenated conjugated diene and nitrogen‐containing nucleophiles. Under the given conditions, pyridinium salts can only continue to perform the dehalogenation if there is residue water remaining from the starting materials. The obtained carbon materials are highly doped by various heteroatoms, leading to high densities, abundant multimodal pores, and an excellent volumetric capacitive performance. Porous carbon tri‐doped with nitrogen, phosphorous, and oxygen exhibits a high packing density (2.13 g cm?3) and an exceptional volumetric energy density (36.8 Wh L?1) in alkaline electrolytes, making it competitive to even some Ni‐MH cells.  相似文献   

6.
Redox‐flow batteries (RFB) can easily store large amounts of electric energy and thereby mitigate the fluctuating output of renewable power plants. They are widely discussed as energy‐storage solutions for wind and solar farms to improve the stability of the electrical grid. Most common RFB concepts are based on strongly acidic metal‐salt solutions or poorly performing organics. Herein we present a battery which employs the highly soluble N,N,N‐2,2,6,6‐heptamethylpiperidinyl oxy‐4‐ammonium chloride (TEMPTMA) and the viologen derivative N,N′‐dimethyl‐4,4‐bipyridinium dichloride (MV) in a simple and safe aqueous solution as redox‐active materials. The resulting battery using these electrolyte solutions has capacities of 54 Ah L?1, giving a total energy density of 38 Wh L?1 at a cell voltage of 1.4 V. With peak current densities of up to 200 mA cm?2 the TEMPTMA/MV system is a suitable candidate for compact high‐capacity and high‐power applications.  相似文献   

7.
For the first time, hierarchically porous carbon materials with a sandwich‐like structure are synthesized through a facile and efficient tri‐template approach. The hierarchically porous microstructures consist of abundant macropores and numerous micropores embedded into the crosslinked mesoporous walls. As a result, the obtained carbon material with a unique sandwich‐like structure has a relatively high specific surface (1235 m2 g?1), large pore volume (1.30 cm3 g?1), and appropriate pore size distribution. These merits lead to a comparably high specific capacitance of 274.8 F g?1 at 0.2 A g?1 and satisfying rate performance (87.7 % retention from 1 to 20 A g?1). More importantly, the symmetric supercapacitor with two identical as‐prepared carbon samples shows a superior energy density of 18.47 Wh kg?1 at a power density of 179.9 W kg?1. The asymmetric supercapacitor based on as‐obtained carbon sample and its composite with manganese dioxide (MnO2) can reach up to an energy density of 25.93 Wh kg?1 at a power density of 199.9 W kg?1. Therefore, these unique carbon material open a promising prospect for future development and utilization in the field of energy storage.  相似文献   

8.
The ionic conductivity and small size of the hydrogen ion make it an ideal charge carrier for hydrogen‐ion energy storage (HES); however, high‐voltage two‐electrode configurations are difficult to construct as the result of the lack of efficient cathodic energy storage. Herein, the high potential fast anionic redox at the cathode of reduced graphene oxide (rGO) was applied by introducing redox additive electrolytes. By coupling the storing hydrogen ion in the Ti3C2Tx at the anode, a HES with a voltage of 1.8 V and a plateau voltage at 1.2 V was constructed. Compared with 2.2 Wh kg?1 for the low‐voltage Ti3C2Tx//Ti3C2Tx, the specific energy of asymmetric rGO//Ti3C2Tx reaches 34.4 Wh kg?1. Furthermore, it possesses an energy density of 23.7 Wh kg?1 at high power density of 22.5 kW kg?1. Thus, this study provides a novel guideline for constructing high‐voltage fast HES full cells.  相似文献   

9.
Sodium ion batteries have been developed using ionic liquids as electrolytes. Sodium is superior to lithium as a raw material for mass production of large‐scale batteries for energy storage due to its abundance and even distribution across the earth. Ionic liquids are non‐volatile and non‐flammable, which improved the safety of the batteries remarkably. In addition, operation temperatures were extended to higher values, improving the performance of the batteries by facilitating the reaction at the electrode and mass transfer. Binary systems of sodium and quaternary ammonium salts, such as 1‐ethyl‐3‐methylimidazolium and N‐methyl‐N‐propylpyrrolidinium bis(fluorosulfonyl)amide, were employed as electrolytes for sodium ion batteries. A series of positive and negative electrode materials were examined to be combined with these ionic liquid electrolytes. A 27 Ah full cell was fabricated employing sodium chromite (NaCrO2) and hard carbon as positive and negative electrode materials, respectively. The gravimetric energy density obtained for the battery was 75 Wh kg?1 and its volumetric energy density was 125 Wh L?1. The capacity retention after 500 cycles was 87 %. Further improvement of the cell performance and energy density is expected on development of suitable electrode materials and optimization of the cell design.  相似文献   

10.
Redox‐active anthraquinone molecules represent promising anolyte materials in aqueous organic redox flow batteries (AORFBs). However, the chemical stability issue and corrosion nature of anthraquinone‐based anolytes in reported acidic and alkaline AORFBs constitute a roadblock for their practical applications in energy storage. A feasible strategy to overcome these issues is migrating to pH‐neutral conditions and employing soluble AQDS salts. Herein, we report the 9,10‐anthraquinone‐2,7‐disulfonic diammonium salt AQDS(NH4)2 , as an anolyte material for pH‐neutral AORFBs with solubility of 1.9 m in water, which is more than 3 times that of the corresponding sodium salt. Paired with an NH4I catholyte, the resulting pH‐neutral AORFB with an energy density of 12.5 Wh L?1 displayed outstanding cycling stability over 300 cycles. Even at the pH‐neutral condition, the AQDS(NH4)2 /NH4I AORFB delivered an impressive energy efficiency of 70.6 % at 60 mA cm?2 and a high power density of 91.5 mW cm?2 at 100 % SOC. The present AQDS(NH4)2 flow battery chemistry opens a new avenue to apply anthraquinone molecules in developing low‐cost and benign pH‐neutral flow batteries for scalable energy storage.  相似文献   

11.
Redox‐active anthraquinone molecules represent promising anolyte materials in aqueous organic redox flow batteries (AORFBs). However, the chemical stability issue and corrosion nature of anthraquinone‐based anolytes in reported acidic and alkaline AORFBs constitute a roadblock for their practical applications in energy storage. A feasible strategy to overcome these issues is migrating to pH‐neutral conditions and employing soluble AQDS salts. Herein, we report the 9,10‐anthraquinone‐2,7‐disulfonic diammonium salt AQDS(NH4)2 , as an anolyte material for pH‐neutral AORFBs with solubility of 1.9 m in water, which is more than 3 times that of the corresponding sodium salt. Paired with an NH4I catholyte, the resulting pH‐neutral AORFB with an energy density of 12.5 Wh L?1 displayed outstanding cycling stability over 300 cycles. Even at the pH‐neutral condition, the AQDS(NH4)2 /NH4I AORFB delivered an impressive energy efficiency of 70.6 % at 60 mA cm?2 and a high power density of 91.5 mW cm?2 at 100 % SOC. The present AQDS(NH4)2 flow battery chemistry opens a new avenue to apply anthraquinone molecules in developing low‐cost and benign pH‐neutral flow batteries for scalable energy storage.  相似文献   

12.
A conceptually new all‐solid‐state asymmetric supercapacitor based on atomically thin sheets is presented which offers the opportunity to optimize supercapacitor properties on an atomic level. As a prototype, β‐Co(OH)2 single layers with five‐atoms layer thickness were synthesized through an oriented‐attachment strategy. The increased density‐of‐states and 100 % exposed hydrogen atoms endow the β‐Co(OH)2 single‐layers‐based electrode with a large capacitance of 2028 F g?1. The corresponding all‐solid‐state asymmetric supercapacitor achieves a high cell voltage of 1.8 V and an exceptional energy density of 98.9 Wh kg?1 at an ultrahigh power density of 17 981 W kg?1. Also, this integrated nanodevice exhibits excellent cyclability with 93.2 % capacitance retention after 10 000 cycles, holding great promise for constructing high‐energy storage nanodevices.  相似文献   

13.
The sodium‐ion battery is a promising battery technology owing to its low price and high abundance of sodium. However, the sluggish kinetics of sodium ion makes it hard to achieve high‐rate performance, therefore impairing the power density. In this work, a fiber‐in‐tube Co9S8‐carbon(C)/Co9S8 is designed with fast sodiation kinetics. The experimental and simulation analysis show that the dominating capacitance mechanism for the high Na‐ion storage performance is due to abundant grain boundaries, three exposed layer interfaces, and carbon wiring in the design. As a result, the fiber‐in‐tube hybrid anode shows a high specific capacity of 616 mAh g?1 after 150 cycles at 0.5 A g?1. At 1 A g?1, a capacity of ca. 451 mAh g?1 can be achieved after 500 cycles. More importantly, a high energy density of 779 Wh kg?1 and power density of 7793 W kg?1 can be obtained simultaneously.  相似文献   

14.
We report a supramolecular strategy to prepare conductive hydrogels with outstanding mechanical and electrochemical properties, which are utilized for flexible solid‐state supercapacitors (SCs) with high performance. The supramolecular assembly of polyaniline and polyvinyl alcohol through dynamic boronate bond yields the polyaniline–polyvinyl alcohol hydrogel (PPH), which shows remarkable tensile strength (5.3 MPa) and electrochemical capacitance (928 F g?1). The flexible solid‐state supercapacitor based on PPH provides a large capacitance (306 mF cm?2 and 153 F g?1) and a high energy density of 13.6 Wh kg?1, superior to other flexible supercapacitors. The robustness of the PPH‐based supercapacitor is demonstrated by the 100 % capacitance retention after 1000 mechanical folding cycles, and the 90 % capacitance retention after 1000 galvanostatic charge–discharge cycles. The high activity and robustness enable the PPH‐based supercapacitor as a promising power device for flexible electronics.  相似文献   

15.
Herein, we report a nanoarchitectured nickel molybdate/carbon fibers@pre‐treated Ni foam (NiMoO4/CF@PNF) electrode for supercapacitors. The synthesis of NiMoO4/CF@PNF mainly consists of a direct chemical vapor deposition (CVD) growth of dense carbon fibers (CFs) onto pre‐treated Ni foam (PNF) as the substrate, followed by in situ growth of NiMoO4 nanosheets (NSs) on the CF@PNF substrate by means of a hydrothermal process. The NiMoO4/CF@PNF electrode exhibits a high areal capacitance (5.14 F cm?2 at 4 mA cm?2) and excellent cycling stability (97 % capacitance retention after 2000 cycles at 10 mA cm?2). Furthermore, we have successfully assembled NiMoO4 NSs//activated carbon (AC) asymmetric supercapacitors, which can achieve an energy density of 45.6 Wh kg?1 at 674 W kg?1, and excellent stability with 93 % capacitance retention after 2000 cycles at 5 mA cm?2. These superior properties hold great promise for energy‐storage applications.  相似文献   

16.
Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost‐effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10‐anthraquinone‐2,7‐disulfonic acid (AQDS)/1,2‐benzoquinone‐3,5‐disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L?1 and a solar‐to‐output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency.  相似文献   

17.
Metal–organic framework cathodes usually exhibit low capacity and poor electrochemical performance for Li‐ion storage owing to intrinsic low conductivity and inferior redox activity. Now a redox‐active 2D copper–benzoquinoid (Cu‐THQ) MOF has been synthesized by a simple solvothermal method. The abundant porosity and intrinsic redox character endow the 2D Cu‐THQ MOF with promising electrochemical activity. Superior performance is achieved as a Li‐ion battery cathode with a high reversible capacity (387 mA h g?1), large specific energy density (775 Wh kg?1), and good cycling stability. The reaction mechanism is unveiled by comprehensive spectroscopic techniques: a three‐electron redox reaction per coordination unit and one‐electron redox reaction per copper ion mechanism is demonstrated. This elucidatory understanding sheds new light on future rational design of high‐performance MOF‐based cathode materials for efficient energy storage and conversion.  相似文献   

18.
We have synthesized and characterized perovskite‐type SrCo0.9Nb0.1O3−δ (SCN) as a novel anion‐intercalated electrode material for supercapacitors in an aqueous KOH electrolyte, demonstrating a very high volumetric capacitance of about 2034.6 F cm−3 (and gravimetric capacitance of ca. 773.6 F g−1) at a current density of 0.5 A g−1 while maintaining excellent cycling stability with a capacity retention of 95.7 % after 3000 cycles. When coupled with an activated carbon (AC) electrode, the SCN/AC asymmetric supercapacitor delivered a specific energy density as high as 37.6 Wh kg−1 with robust long‐term stability.  相似文献   

19.
The development of multivalent metal (such as Mg and Ca) based battery systems is hindered by lack of suitable cathode chemistry that shows reversible multi‐electron redox reactions. Cationic redox centres in the classical cathodes can only afford stepwise single‐electron transfer, which are not ideal for multivalent‐ion storage. The charge imbalance during multivalent ion insertion might lead to an additional kinetic barrier for ion mobility. Therefore, multivalent battery cathodes only exhibit slope‐like voltage profiles with insertion/extraction redox of less than one electron. Taking VS4 as a model material, reversible two‐electron redox with cationic–anionic contributions is verified in both rechargeable Mg batteries (RMBs) and rechargeable Ca batteries (RCBs). The corresponding cells exhibit high capacities of >300 mAh g?1 at a current density of 100 mA g?1 in both RMBs and RCBs, resulting in a high energy density of >300 Wh kg?1 for RMBs and >500 Wh kg?1 for RCBs. Mechanistic studies reveal a unique redox activity mainly at anionic sulfides moieties and fast Mg2+ ion diffusion kinetics enabled by the soft structure and flexible electron configuration of VS4.  相似文献   

20.
Two‐dimensional conjugated aromatic networks (CAN) with ultra‐thin conjugated layers (ca. 3.5 nm) and high single‐metal‐atom‐site density (mass content of 10.7 wt %, and 0.73 metal atoms per nm2) are prepared via a facile pyrolysis‐free route involving a one‐step ball milling of the solid‐phase‐synthesized polyphthalocyanine. These materials display outstanding oxygen reduction reaction (ORR) mass activity of 47 mA mgcat.?1 represents 1.3‐ and 6.4‐fold enhancements compared to Pt and Pt/C in benchmark Pt/C, respectively. Moreover, the primary Zn‐air batteries constructed with CAN as an air electrode demonstrate a mass/volume power density of 880 W gcat.?1/615 W cmcat.?3 and stable long‐term operation for 100 h. This strategy offers a new way to design high‐performance electrocatalysts with atomic precision for use in other energy‐storage and conversion applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号