首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
自第一次工业革命以来,传统的化石能源(煤炭,石油等)一直是能源消费的主体。但是,随着社会的进步和技术的发展,能耗不断增加。但是化石能源不仅储量有限,而且还会引起严重的环境问题(环境污染和温室效应)。因此,清洁和可持续能源的研究与开发尤为重要,氢能是研究的重点之一。由于氢具有高能量密度、清洁和可持续性的特点,因而成为了最有前景的能源载体。然而,氢气的储存和运输困难严重限制了其在质子交换膜燃料电池中的实际应用。作为液态氢存储材料之一,甲酸在催化剂存在下于室温下即可分解。另外,甲酸分解制氢的反应中不会释放有毒有害气体,对环境友好。用于甲酸分解(FAD)的高效催化剂是制氢的关键材料。本文制备了由薄层氮化碳促进的高性能钯(Pd)基催化剂,用于甲酸分解。首先,通过一步法直接煅烧三聚硫氰酸,以获得氮化碳(C3N4-S),然后制备以C3N4-S为载体的Pd基FAD催化剂(Pd/C3N4-S)。在三聚硫氰酸的热解过程中,―SH基团的溢出具有剥离作用,因此形成的C3...  相似文献   

2.
负载型Pd基催化剂是最有效的甲酸分解(FAD)制氢催化剂之一,其中氮化碳载体的N含量较高,但是通常一步热解法制备的氮化碳为块状,难以有效分散表面金属纳米粒子(NPs)。 本文通过将尿素前驱体在溶剂化作用后热解得到功能化氮化碳,以此为载体,利用阴离子交换和硼氢化钠直接还原法制备了功能化氮化碳负载的Pd基催化剂(Pd/C3N4-F)。 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)对材料结构进行表征,并通过气体质量流量计测试了催化剂的性能。 Pd/C3N4-F具有优异的催化FAD制氢性能,30 ℃下的初始TOF(总转换频率)值和质量比活性分别为1824 h-1和17.14 molH2/(gPd·h)。 对产物的气相色谱分析结果也表明没有副产物CO生成,表明催化剂具有优异的选择性。 并且随着温度的升高(30~40 ℃),催化剂性能逐渐提高。  相似文献   

3.
研究了在不同的半导体体系(TiO2, CdS和C3N4)中, Ni2P光催化甲酸(HCOOH)分解制氢的助催化效应. 作为助催化剂, Ni2P与3种半导体形成的复合光催化剂均表现出良好的HCOOH分解制氢活性. Ni2P/TiO2, Ni2P/CdS, Ni2P/C3N4 3种光催化剂最优的产氢活性分别为41.69, 22.45和47.67 μmol·mg-1·h-1, 分别为纯TiO2, CdS和C3N4的3.8倍、 10倍和210倍, 表明Ni2P在光催化HCOOH分解制氢体系中具有普适性. 研究了光催化HCOOH分解制氢的机理, Ni2P的加入使光生电子从半导体转移至Ni2P, 提高了光生电子-空穴对的分离效率; Ni2P还促进了活性物种·OH的生成, 提高了光催化HCOOH分解的产氢速率.  相似文献   

4.
本文分别以尿素、双氰胺和三聚氰胺为前驱体,加水煅烧制备超薄氮化碳,并以其为载体制备了负载型Pd基催化剂,用于甲酸分解制氢反应。通过X射线衍射仪(XRD)、透射电子显微镜(TEM)、傅里叶红外光谱(FTIR)和X射线光电子能谱(XPS)等表征方法对所制备的材料的结构进行了分析,并测试了催化剂的产氢性能。结果表明,Pd/CN-U1W5催化剂对甲酸制氢表现出优异的催化活性,在348 K时初始TOF为1058 h-1。经分析发现,水分子剥离的尿素分子所构建的薄层CN产生了更多的结构缺陷,提高了活性组分Pd在载体表面的分散,有助于提高催化剂的催化性能。  相似文献   

5.
基于半导体的光催化制氢是解决当前日益增长的能源危机与环境污染等问题的有效选择之一.长期以来,设计具有不同结构与吸光特性的有机及无机半导体材料,开发廉价高效的助催化剂,构筑半导体异质结体系,探索实用研究装置等均受到广泛研究.其中氮化碳材料在过去十年中吸引了较大关注,但其光催化性能受到带隙较宽(代表材料C3N4的带隙为~2.7 e V)的限制.近年来,富氮型氮化碳(C3N5)材料因带隙更窄,在光催化污染物去除、光电能源转化和气体传感等领域被广泛研究,但其光催化制氢性能的系统研究尚未见报道.本文以3-氨基-1,2,4-三唑为原料,通过热处理制备C3N5,并对其光催化制氢性能进行了系统研究.X射线粉末衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、CHNS元素分析及红外光谱等表征结果确认成功制备了C3N5材料.同时,采用化学还原法(Na BH4为还原剂)负载Pt助催化剂并未对C3N5的结构及形貌造成影响;XRD,TEM及XPS结果表明,Pt以单质形态分散在C3N5材料上.紫外可见漫反射光谱(DRS)分析表明,C3N5在400~600 nm范围的可见光区具有强吸收,对600~800 nm范围的近红外光区也有一定的吸收能力.对Pt-C3N5材料的光催化制氢反应条件进行优化,以获得较好的催化活性.循环测试及光照后样品的XRD及DRS表明,C3N5具有良好的光催化稳定性.对比实验结果表明,负载1.0wt%Pt助催化剂时,C3N5的制氢速率约为C3N4的2.2倍.分析结果表明,比表面积及导带位置不是造成两种氮化碳材料光催化性能差异的主要因素.DRS、荧光光谱及光电流行为实验结果表明,C3N5具备更宽的可见光吸收范围,更窄的带隙及更快的光生e-/h+分离效率.采用包括原位红外在内的系列表征手段对水分子在材料表面的吸附性能进行研究,发现C3N5表面可以吸附更多的水分子,有利于表面水还原反应的进行.综上,本文为富氮型氮化碳材料的开发及其较高光催化活性的内在机制研究提供了新的见解.  相似文献   

6.
使用尿素、 红磷和氯化镍为原料, 通过一种简单的焙烧方法合成了Ni5P4/g-C3N4光催化剂. 该催化剂形成的异质结可以降低界面电阻, 有效抑制光生电子-空穴对复合率. 以罗丹明B模拟污染物进行降解测试, 发现3NPC的反应速率常数最高, 几乎是g-C3N4的7倍, 并具有最高的光催化产氢能力, 制氢速率高达1013.88 μmol·g-1·h-1, 明显高于g-C3N4(664.38 μmol·g-1·h-1).  相似文献   

7.
以六水金氯化钴、 硒粉和尿素为前驱体, 通过水热法合成C3N4/CoSe2纳米粒子, 再将其锚定在石墨烯气凝胶(Graphene aerogel, GA)表面, 制备蜂窝状C3N4/CoSe2/GA光催化剂. 采用X射线衍射(XRD)、 X射线光电子能谱(XPS)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)和紫外-可见漫反射光谱(UV-Vis DRS)等手段对材料的结构、 形貌和光学性能进行表征. 同时以氙灯作为模拟可见光光源, 通过CO2光催化还原为CO考察所制备纳米材料的光催化活性. 结果表明, 在C3N4纳米片表面引入了CoSe2和GA并制备出蜂窝状结构 C3N4/CoSe2/GA催化剂, 通过GA, CoSe2与C3N4耦合可以显著提高光吸收密度以及扩展光响应范围, 呈现了更低的荧光强度和最大的电子转移速率. 在同种光催化下, C3N4/CoSe2/GA对CO2还原催化效率最大, CO产量达到5.75 μmol·g-1·h-1, 并且重复使用性能良好.  相似文献   

8.
分别以Al2O3, SiO2和C3N4为载体, 通过简单浸渍法制备了3种负载型Pd-Cu催化剂(PC-Al2O3, PC-SiO2, PC-C3N4), 考察了其在室温下富氢气氛中CO优先氧化反应性能. 采用X射线衍射(XRD)、 傅里叶变换红外光谱(FTIR)、 氮气物理吸附仪(N2-physisorption)、 氢气程序升温还原(H2-TPR)、 二氧化碳程序升温脱附(CO2-TPD)、 X射线光电子能谱(XPS)和原位漫反射傅里叶变换红外光谱(In situ DRIFTS)等手段对其进行了表征. 结果表明, 与PC-SiO2和PC-C3N4相比, PC-Al2O3具有更高的CO优先氧化性能. 这是由于PC-Al2O3上形成了大量与Pd物种具有强相互作用的Cu2Cl(OH)3物种; 而PC-SiO2中仅有少量的Cu2Cl(OH)3, 且与Pd物种相互作用较弱; PC-C3N4中Cu物种则更易与C3N4基质配位, 由此削弱了Pd, Cu之间的相互作用. 在反应气氛下PC-Al2O3表面还易形成具有更强CO活化能力的Pd+物种, 通过与大量Cu+物种紧密相互作用, 在一定程度上抑制Pd+被过度还原为Pd0, 从而维持了其催化活性. 与SiO2和C3N4相比, Al2O3更适合负载Pd-Cu用于富氢气氛下CO优先氧化反应.  相似文献   

9.
采用等体积浸渍法制备了一系列多孔竹炭负载的有机氮掺杂的镍钨催化剂,并将其应用于催化竹浆纤维氢解制C2,3多元醇反应。有机氮源与催化剂前驱体中Ni2+络合,高温煅烧时载体表面碳、氮和金属离子相互作用后生成一定量的C3N4、氮化物和合金物相。通过XRD、XPS和TEM等表征手段分析了催化剂Ni-W/MBC表面物理化学性质与催化活性间的关系。结果表明,除了金属镍、氧化钨物相外,表面还含有Ni-W合金(NiWO4为主);金属粒子表面包围了一层石墨化C3N4物相。XPS分析表明,有机氮源高温分解反应后形成了C3N4物相。在反应条件下,15% Ni-20% W/MBC@M-0.25催化剂得到乙二醇收率为55.8%,而未添加有机氮源的催化剂15% Ni-20% W/MBC获得的乙二醇收率仅为36.9%。催化剂稳定性实验结果表明,Ni-W合金和C3N4物相的形成显著增强了Ni-W/MB催化剂的稳定性,延长了催化剂寿命。  相似文献   

10.
石墨氮化碳(g?C3N4)是一种窄带隙的n型半导体材料,具有可见光降解有机污染物能力;凹凸棒土(ATP)具有很强的表面活性和吸附能力,可作为催化剂的载体。我们以g?C3N4和ATP杂化材料(ATP/g?C3N4)为基础,通过简单的化学还原法将纳米Pt颗粒沉积到ATP/g?C3N4表面,随后利用纳米金属Pt颗粒催化苯胺无电聚合,促使聚苯胺(PANI)在ATP/g?C3N4表面或孔道中原位生成,获得ATP/g?C3N4?Pt/PANI复合材料。以阴离子染料甲基橙(MO)为模型体系,考察了复合材料的可见光催化性能。研究表明,共轭结构的PANI和g?C3N4在复合材料中保持完好,说明其具有良好的兼容性。由于多组分材料之间的协同效应,使得ATP/g?C3N4?Pt/PANI纳米复合材料具有卓越的光催化性能。可见光光照80 min后,对20 mg·L-1 MO溶液的降解率达96.3%,而且循环5次后,其降解率仍保持在93.5%。  相似文献   

11.
The growing frustration from facing energy shortages and unbalanced environmental issues has obstructed the long-term development of human society. Semiconductor-based photocatalysis, such as water splitting, transfers solar energy to storable chemical energy and is widely considered an economic and clean solution. Although regarded as a promising photocatalyst, the low specific surface area of g-C3N4 crucially restrains its photocatalytic performance. The macro-mesoporous architecture provides effective channels for mass transfer and full-light utilization and improved the efficiency of the photocatalytic reaction. Herein, g-C3N4 with an inverse opal (IO) structure was rationally fabricated using a well-packed SiO2 template, which displayed an ultrahigh surface area (450.2 m2·g-1) and exhibited a higher photocatalytic H2 evolution rate (21.22 μmol·h-1), almost six times higher than that of bulk g-C3N4 (3.65 μmol·h-1). The IO g-C3N4 demonstrates better light absorption capacity than bulk g-C3N4, primarily in the visible spectra range, owing to the multiple light scattering effect of the three-dimensional (3D) porous structure. Meanwhile, a lower PL intensity, longer emission lifetime, smaller Nyquist semicircle, and stronger photocurrent response (which synergistically give rise to the suppressed recombination of charge carriers) decrease the interfacial charge transfer resistance and boost the formation of photogenerated electron-hole pairs. Moreover, the existing N vacancies intensify the local electron density, helping increase the number of photoexcitons. The N2 adsorption-desorption test revealed the existence of ample mesopores and macropores and high specific surface area in IO g-C3N4, which exposes more active edges and catalytic sites. Optical behavior, electron paramagnetic resonance, and electrochemical characterization results revealed positive factors, including enhanced light utilization, improved photogenerated charge separation, prolonged lifetime, and fortified IO g-C3N4 with excellent photocatalytic performance. This work provides an important contribution to the structural design and property modulation of photocatalysts.   相似文献   

12.
本文通过简单的一步水热法得到Ni2P-NiS双助催化剂,之后采用溶剂蒸发法将Ni2P-NiS与g-C3N4纳米片结合构建获得无贵金属的Ni2P-NiS/g-C3N4异质结。研究结果表明,优化后的复合材料具有良好的光催化产氢活性,其产氢速率最高可到6892.7 μmol·g-1·h-1,分别为g-C3N4 (150 μmol·g-1·h-1)、15%NiS/g-C3N4 (914.5 μmol·g-1·h-1)和15%Ni2P/g-C3N4 (1565.9 μmol·g-1·h-1)的46.1、7.5和4.4倍。这主要归因于Ni2P-NiS相比Ni2P和NiS单体具有更好的载流子转移能力,其与g-C3N4形成的肖特基势垒能有效促进光生载流子在二者界面上的分离,同时Ni2P-NiS能进一步降低析氢过电势,进而显著增强了表面析氢反应动力学。本研究为开发稳定、高效的非贵金属产氢助剂提供了实验基础。  相似文献   

13.
Layered graphitic carbon nitride (g-C3N4) is a typical polymeric semiconductor with an sp2 π-conjugated system having great potential in energy conversion, environmental purification, materials science, etc., owing to its unique physicochemical and electrical properties. However, bulk g-C3N4 obtained by calcination suffers from a low specific surface area, rapid charge carrier recombination, and poor dispersion in aqueous solutions, which limit its practical applications. Controlling the size of g-C3N4 (e.g., preparing g-C3N4 nanosheets) can effectively solve the above problems. Compared with the bulk material, g-C3N4 nanosheets have a larger specific surface area, richer active sites, and a larger band gap due to the quantum confinement effect. As g-C3N4 has a layered structure with strong in-plane C-N covalent bonds and weak van der Waals forces between the layers, g-C3N4 nanosheets can be prepared by exfoliating bulk g-C3N4. Alternatively, g-C3N4 nanosheets can otherwise be obtained through the anisotropic assembly of organic precursors. Nevertheless, some of these methods have various limitations, such as high energy consumption, are time consuming, and have low yield. Accordingly, developing green and cost-effective exfoliation and preparation strategies for g-C3N4 nanosheets is necessary. Herein, the research progress of the exfoliation and preparation strategies (including the thermal oxidation etching process, the ultrasound-assisted route, the chemical exfoliation, the mechanical method, and the template method) for two-dimensional C3N4 nanosheets are introduced. Their features are systematically analyzed and the perspectives and challenges in the preparation of g-C3N4 nanosheets are discussed. This study emphasizes the following: (1) The preparation method of g-C3N4 nanosheets should be properly selected according to the practical application needs. Additionally, various strategies (such as chemical method and ultrasonic method) can be combined to exfoliate nanosheets from bulk g-C3N4; (2) More reasonable nano- or even subnanostructured g-C3N4 nanosheets should be continuously explored; (3) Novel modification strategies, such as defective engineering, heterojunction construction, and surface functional group regulation, should be introduced to improve the reactivity and selectivity of the g-C3N4 nanosheets; (4) The application of in situ characterization techniques (such as in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), electron spin resonance (ESR) spectroscopy, and Raman spectroscopy) should also be strengthened to monitor the detailed catalytic process and investigate the g-C3N4 nanosheet structure-efficiency relationship. (5) To gain a deeper understanding of the relationship between the macroscopic properties and the microscopic structure, the combination of theoretical calculations and experimental results should be strengthened, which will be beneficial for exploiting high-quality g-C3N4 nanosheets.   相似文献   

14.
提高光催化分解水制氢的效率是能量转换领域的关键挑战。本研究首先合成了二维多孔氮化碳(PCN),然后在二维PCN上原位生长了一维W18O49 (WO),形成了一种新型的梯形(S型)异质结。该异质结可以加快界面电荷的分离和转移,赋予WO/PCN体系更好的氧化还原能力。此外,具有多孔结构的PCN提供了更多的催化活性位点。与WO和PCN相比,20% WO/PCN复合材料具有更高的H2产率(1700 μmol·g-1·h-1),是PCN (30 μmol·g-1·h-1)的56倍。本研究提供了一种新S型光催化剂用于光催化制氢领域。  相似文献   

15.
Since the pioneering work on polychlorinated biphenyl photodegradation by Carey in 1976, photocatalytic technology has emerged as a promising and sustainable strategy to overcome the significant challenges posed by energy crisis and environmental pollution. In photocatalysis, sunlight, which is an inexhaustible source of energy, is utilized to generate strongly active species on the surface of the photocatalyst for triggering photo-redox reactions toward the successful removal of environmental pollutants, or for water splitting. The photocatalytic performance is related to the photoabsorption, photoinduced carrier separation, and redox ability of the semiconductor employed as the photocatalyst. Apart from traditional and noble metal oxide semiconductors such as P25, bismuth-based compounds, and Pt-based compounds, 2D g-C3N4 is now identified to have enormous potential in photocatalysis owing to the special π-π conjugated bond in its structure. However, some inherent drawbacks of the conventional g-C3N4, including the insufficient visible-light absorption ability, fast recombination of photogenerated electron-hole pairs, and low quantum efficiency, decrease its photocatalytic activity and limit its application. To date, various strategies such as heterojunction fabrication, special morphology design, and element doping have been adopted to tune the physicochemical properties of g-C3N4. Recent studies have highlighted the potential of defect engineering for boosting the light harvesting, charge separation, and adsorption efficiency of g-C3N4 by tailoring the local surface microstructure, electronic structure, and carrier concentration. In this review, we summarize cutting-edge achievements related to g-C3N4 modified with classified non-external-caused defects (carbon vacancies, nitrogen vacancies, etc.) and external-caused defects (doping and functionalization) for optimizing the photocatalytic performance in water splitting, removal of contaminants in the gas phase and wastewater, nitrogen fixation, etc. The distinctive roles of various defects in the g-C3N4 skeleton in the photocatalytic process are also summarized. Moreover, the practical application of 2D g-C3N4 in air pollution control is highlighted. Finally, the ongoing challenges and perspectives of defective g-C3N4 are presented. The overarching aim of this article is to provide a useful scaffold for future research and application studies on defect-modulated g-C3N4.   相似文献   

16.
Organic photocatalysts have attracted attention owing to their suitable redox band positions, low cost, high chemical stability, and good tunability of their framework and electronic structure. As a novel organic photocatalyst, PDI-Ala (N, N'-bis(propionic acid)-perylene-3, 4, 9, 10-tetracarboxylic diimide) has strong visible-light response, low valence band position, and strong oxidation ability. However, the low photogenerated charge transfer rate and high carrier recombination rate limit its application. Due to the aromatic heterocyclic structure of g-C3N4 and large delocalized π bond in the planar structure of PDI-Ala, g-C3N4 and PDI-Ala can be tightly combined through π–π interactions and N―C bond. The band structure of sulfur-doped g-C3N4 (S-C3N4) matched well with PDI-Ala than that with g-C3N4. The electron delocalization effect, internal electric field, and newly formed chemical bond jointly promote the separation and migration of photogenerated carriers between PDI-Ala and S-C3N4. To this end, a novel step-scheme (S-scheme) heterojunction photocatalyst comprising organic semiconductor PDI-Ala and S-C3N4 was prepared by an in situ self-assembly strategy. Meanwhile, PDI-Ala was self-assembled by transverse hydrogen bonding and longitudinal π–π stacking. The crystal structure, morphology, valency, optical properties, stability, and energy band structure of the PDI-Ala/S-C3N4 photocatalysts were systematically analyzed and studied by various characterization methods such as X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectrometry, X-ray photoelectron spectroscopy, ultraviolet visible diffuse reflectance spectroscopy, electrochemical impedance spectroscopy, and Mott-Schottky curve. The work functions and interface coupling characteristics were determined using density functional theory. The photocatalytic activities of the synthesized photocatalyst for H2O2 production and the degradation of tetracycline (TC) and p-nitrophenol (PNP) under visible-light irradiation are discussed. The PDI-Ala/S-C3N4 S-scheme heterojunction with band matching and tight interface bonding accelerates the intermolecular electron transfer and broadens the visible-light response range of the heterojunction. In addition, in the processes of the PDI-Ala/S-C3N4 photocatalytic degradation reaction, a variety of active species (h+, ·O2-, and H2O2) were produced and accumulated. Therefore, the PDI-Ala/S-C3N4 heterojunction exhibited enhanced photocatalytic performance in the degradation of TC, PNP, and H2O2 production. Under visible-light irradiation, the optimum 30%PDI-Ala/S-C3N4 removed 90% of TC within 90 min. In addition, 30%PDI-Ala/S-C3N4 displayed the highest H2O2 evolution rate of 28.3 μmol·h-1·g-1, which was 2.9 and 1.6 times higher than those of PDI-Ala and S-C3N4, respectively. These results reveal that the all organic photocatalyst comprising PDI-based supramolecular and S-C3N4 can be efficiently applied for the degradation of organic pollutants and production of H2O2. This work not only provides a novel strategy for the design of all organic S-scheme heterojunctions but also provides a new insight and reference for understanding the structure–activity relationship of heterostructure catalysts with effective interface bonding.   相似文献   

17.
Photocatalytic reduction of carbon dioxide into chemical fuels is a promising route to generate renewable energy and curtail the greenhouse effect. Therefore, various photocatalysts have been intensively studied for this purpose. Among them, g-C3N4, a 2D metal-free semiconductor, has been a promising photocatalyst because of its unique properties, such as high chemical stability, suitable electronic structure, and facile preparation. However, pristine g-C3N4 suffers from low solar energy conversion efficiency, owing to its small specific surface area and extensive charge recombination. Therefore, designing g-C3N4 (CN) nanosheets with a large specific surface area is an effective strategy for enhancing the CO2 reduction performance. Unfortunately, the performance of CN nanosheets remains moderate due to the aforementioned charge recombination. To counter this issue, loading a cocatalyst (especially a two-dimensional (2D) one) can enable effective electron migration and suppress electron-hole recombination during photo-irradiation. Herein, CN nanosheets with a large specific surface area (97 m2·g-1) were synthesized by a two-step calcination method, using urea as the precursor. Following this, a 2D/2D FeNi-LDH/g-C3N4 hybrid photocatalyst was obtained by loading a FeNi layered double hydroxide (FeNi-LDH) cocatalyst onto CN nanosheets by a simple hydrothermal method. It was found that the production rate of methanol from photocatalytic CO2 reduction over the FeNi-LDH/g-C3N4 composite is significantly higher than that of pristine CN. Following a series of characterization and analysis, it was demonstrated that the FeNi-LDH/g-C3N4 composite photocatalyst exhibited enhanced photo-absorption, which was ascribed to the excellent light absorption ability of FeNi-LDH. The CO2 adsorption capacity of the FeNi-LDH/g-C3N4 hybrid photocatalyst improved, owing to the large specific surface area and alkaline nature of FeNi-LDH. More importantly, the introduction of FeNi-LDH on the CN nanosheet surface led to the formation of a 2D/2D heterojunction with a large contact area at the interface, which could promote the interfacial separation of charge carriers and effectively inhibit the recombination of the photogenerated electrons and holes. This subsequently resulted in the enhancement of the CO2 photo-reduction activity. In addition, by altering the loading amount of FeNi-LDH for photocatalytic performance evaluation, it was found that the optimal loading amount was 4% (w, mass fraction), with a methanol production rate of 1.64 μmol·h-1·g-1 (approximately 6 times that of pure CN). This study provides an effective strategy to improve the photocatalytic CO2 reduction activity of g-C3N4 by employing 2D layered double hydroxide as the cocatalyst. It also proposes a protocol for the successful design of 2D/2D photocatalysts for solar energy conversion.   相似文献   

18.
Photocatalytic reduction of CO2 to hydrocarbon compounds is a promising method for addressing energy shortages and environmental pollution. Considerable efforts have been devoted to exploring valid strategies to enhance photocatalytic efficiency. Among various modification methods, the hybridization of different photocatalysts is effective for addressing the shortcomings of a single photocatalyst and enhancing its CO2 reduction performance. In addition, metal-free materials such as g-C3N4 and black phosphorus (BP) are attractive because of their unique structures and electronic properties. Many experimental results have verified the superior photocatalytic activity of a BP/g-C3N4 composite. However, theoretical understanding of the intrinsic mechanism of the activity enhancement is still lacking. Herein, the geometric structures, optical absorption, electronic properties, and CO2 reduction reaction processes of 2D/2D BP/g-C3N4 composite models are investigated using density functional theory calculations. The composite model consists of a monolayer of BP and a tri-s-triazine-based monolayer of g-C3N4. Based on the calculated work function, it is inferred that electrons transfer from g-C3N4 to BP owing to the higher Fermi level of g-C3N4 compared with that of BP. Furthermore, the charge density difference suggests the formation of a built-in electric field at the interface, which is conducive to the separation of photogenerated electron-hole pairs. The optical absorption coefficient demonstrates that the light absorption of the composite is significantly higher than that of its single-component counterpart. Integrated analysis of the band edge potential and interfacial electronic interaction indicates that the migration of photogenerated charge carriers in the BP/g-C3N4 hybrid follows the S-scheme photocatalytic mechanism. Under visible-light irradiation, the photogenerated electrons on BP recombine with the photogenerated holes on g-C3N4, leaving photogenerated electrons and holes in the conduction band of g-C3N4 and the valence band of BP, respectively. Compared with pristine g-C3N4, this S-scheme heterojunction allows efficient separation of photogenerated charge carriers while effectively preserving strong redox abilities. Additionally, the possible reaction path for CO2 reduction on g-C3N4 and BP/g-C3N4 is discussed by computing the free energy of each step. It was found that CO2 reduction on the composite occurs most readily on the g-C3N4 side. The reaction path on the composite is different from that on g-C3N4. The heterojunction reduces the maximum energy barrier for CO2 reduction from 1.48 to 1.22 eV, following the optimal reaction path. Consequently, the BP/g-C3N4 heterojunction is theoretically proven to be an excellent CO2 reduction photocatalyst. This work is helpful for understanding the effect of BP modification on the photocatalytic activity of g-C3N4. It also provides a theoretical basis for the design of other high-performance CO2 reduction photocatalysts.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号