首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
蜡烛中香茅油成分的气相色谱-质谱分析   总被引:2,自引:0,他引:2  
王恒毅  崔荣  刘伟  孙利 《色谱》2003,21(4):436-436
香茅油[1],又称香草油或雄刈萱油,为一种精油,由香茅的全草经蒸汽蒸馏而得,外观为淡黄色液体,有浓郁的山椒香气,主要成分为香茅醛、香叶醇和香茅醇。香茅油多用于提取香茅醛,供合成羟基香茅醛、香叶醇、薄荷脑,也可用作杀虫剂、驱蚊药和皂用香料。在蜡烛中加入一定量的香茅油成分,可使蜡烛在燃烧的同时具有杀虫、驱蚊的功效。关于香茅油化学成分分析的研究已有报道[2,3],但是蜡烛中香茅油成分测定却未见有报道。由于加入香茅油的蜡制品在海关进出口商品归类中属于熏蒸剂型杀虫剂,需要对其进行相应的贸易管制,所以蜡烛中香茅油成分的测定…  相似文献   

2.
采用长链聚合物聚二烯丙基二甲基氯化铵(PDDA)对多壁碳纳米管(MWCNTs)进行修饰,并将采用胶体法还原出的铂(Pt)纳米粒子通过静电作用担载于PDDA修饰的多壁碳纳米管上,从而制备出Pt/PDDA/MWCNTs复合电催化剂.透射电镜(TEM)与X射线衍射(XRD)测试结果表明, Pt纳米粒子均匀地分布在MWCNTs的表面,其平均粒径约为3.6 nm.热失重分析显示催化剂的实际负载量为36%(w).旋转圆盘电极测试结果表明, Pt/PDDA/MWCNTs催化剂对碱性条件下的氧气还原反应(ORR)具有优异的催化活性.与负载量为40%(w)的商业Pt/C催化剂相比, Pt/PDDA/MWCNTs催化剂的氧气还原反应的起始电位和半波电位均正移约30 mV,其质量比活性更大.动力学研究结果进一步证实Pt/PDDA/MWCNTs催化剂比负载量为40%(w)的商业Pt/C催化剂在碱性条件下对氧气还原反应具有更优异的催化活性.  相似文献   

3.
基于密度泛函理论(DFT)和巨正则蒙特卡洛(GCMC)模拟方法,系统地研究了引入配位不饱和金属位(CUS)对PAF-30n (n = 1–4)材料储氢性能影响的规律。结果表明,77 K下PAF-302MgO2_PBE100的最大过量质量储氢量达到7.97% (w);77 K、10 MPa下100%醇镁功能化改性PAF-302和PAF-303的绝对储氢量分别达到9.9% (w) (65.9 g∙L-1)和15.0% (w) (50.5 g∙L-1),分别超过美国能源部(DOE)标准80% (64.8%)和173% (26.3%),均超过在相同条件下目前储氢性能最佳的NU-1101 (9.1% (w), 46.6 g∙L-1)。即使在243 K、10 MPa下,其绝对质量和绝对体积储氢量也能分别达到5.13% (w)和34.19 g∙L-1,占DOE质量与体积储氢标准的93.3%和85.5%,是目前为止常温储氢性能较为均衡的多孔材料之一。结合等量吸附热(Qst)、径向分布函数(RDF)和质心几率密度分布(MCPD)方法进一步分析,发现有机链长度增加导致孔隙率增加和体积比表面积减小,是引起多孔材料绝对质量和绝对体积储氢量此消彼长的根本原因。另外,引入CUS能提高PAFs材料对H2分子亲和力,显著增强其体积储氢量。  相似文献   

4.
本文以鱼明胶为分散介质,采用双注法制备AgBr/I纳米粒子乳剂,控制银盐与卤溶液的注入速率(R),以TEM观测了粒子的生长,据此探讨了该乳剂中AgBr/I纳米粒子平均粒径(d)及分布(±σ)与反应条件的关系.发现在R为1.3 mmol/min-8 mmol/min范围内,随R增大,d减小,R-d间呈良好的线性关系.除个别外,±σ值变化不明显.对于该纳米粒子乳剂采用二氧化硫脲进行化学敏化,结果表明:适当增加二氧化硫脲的加入量和延长敏化时间,均可有效提高乳剂的感光度,并有助于改善其低照度互易律失效,此外还揭示了曝光光源色温对该乳剂感光性能的影响.  相似文献   

5.
已有研究普遍认为铅离子(Pb2+)诱导富G适体链形成的G-四链体(Pb2+-G4)比钾离子(K+)诱导富G适体链形成的G-四链体(K+-G4)更为稳定,因而Pb2+可以置换K+-G4中的K+,而且K+的存在不影响Pb2+-G4的稳定性。有趣的是本研究发现K+ (20 μmol∙L−1–1 mmol∙L−1)不仅可以诱导10 µmol∙L−1 Pb2+稳定的T2TT(Pb2+-T2TT,杂合G4结构)发生构型转换,甚至还可取代Pb2+-T2TT中的Pb2+,形成K+稳定的T2TT (K+-T2TT,平行G4结构),最终转化形成的K+-G4结构与单独K+诱导富G适体链形成K+-G4的构型基本一致。随后,进一步考察了另外7条富G适体链,发现这一转化过程具有一定的普适性。该研究结果为理解G4构型转化以及内嵌离子交换提供了新的视角,也为拓展G4在生化分析和生物领域的应用提供了新的理论基础。  相似文献   

6.
藜芦醛(3,4-二甲氧基苯甲醛,又称甲基香兰素)是一种具有香荚兰(Vanilla beans)型香味的合成香料。在1875年已由Tiemann通过香兰素(Vanillin)的甲基化而制得。以后,Fichter和Briner又分别通过电化学氧化和臭氧化从异甲基丁香酚而获得。迄今关于藜芦醛的合成主要还是从香兰素的甲基化和在藜芦醚(Veratrole)上通过Gattermann反应引入甲酰基来制取。我们在国产香茅属植物精油的系统研究中,发现贵州罗甸野生的青香茅(Cymbopogon tortilis)精油中含有大约56%的甲基丁香酚。为了开展国产香茅油的综合利用,我们研究了从甲  相似文献   

7.
以TiMnx (x = 1.4, 1.5, 1.6, 1.7)非计量比合金为对象,系统研究了储氢容量与其内在结构之间的相关性。结果表明,所有合金的主相均为C14型Laves相,但其储氢容量却存在显著差异。其中TiMn1.4合金的储氢量约为0.65% (w,质量分数),吸/放氢平台较倾斜,且存在明显的滞后;而TiMn1.5合金的可逆储氢量达到1.2% (w),平台较为平坦;但继续增加x,其储氢量反而降低,如x = 1.6合金的储氢量仅为0.30% (w),而x = 1.7合金则几乎不吸氢。进一步结构解析表明,上述储氢容量的迥异主要归因于部分Ti原子占据Mn(2a)位置,且其占位率随x的增加而降低,随之C14相中贮氢四面体间隙体积减小;而引起贮氢四面体间隙体积发生变化的主要因素是Ti―Ti键和Mn(2a)―Mn(2a)键的键长,其中Mn(2a)―Mn(2a)键长的增加对合金储氢容量的提升起关键作用。  相似文献   

8.
通过测定药物液滴的平均粒径和Zeta电位研究了体系pH值、 乳化温度和电解质离子对乳化剂三苯乙烯基苯酚聚氧乙烯醚磷酸酯三乙醇胺盐(SCP)稳定的异丙甲草胺水乳剂稳定性的影响. 结果发现, 体系的pH值影响SCP分子在水中的电离能力, 当pH=9时, SCP完全电离, 能为液滴提供较大的静电稳定作用, 水乳剂稳定性最好; 乳化温度低时, SCP分子向液滴界面扩散慢, 且舒展不完全, 液滴所带负电荷较少, 水乳剂稳定性差; 温度升高后, 水相黏度减小, 布朗运动加剧, 液滴碰撞合并几率增大, 且SCP分子热运动增强, 易从界面逃逸, 液滴间静电斥力减弱, 同时SCP亲水性下降, 水乳剂稳定性变差; 电解质离子会压缩界面双电层, 降低Zeta电位, 液滴带电量减少而聚结, 离子浓度越大, 电荷数越大, 水乳剂稳定性越差. 在相同的离子浓度下, 水合半径小的Ca2+压缩双电层能力强于Mg2+, 添加Ca2+后水乳剂稳定性更差.  相似文献   

9.
阿维菌素水乳剂的稳定性   总被引:9,自引:0,他引:9  
首先将辛基酚聚氧乙烯醚(OP10)、苯乙烯基酚聚氧乙烯醚(602)和蓖麻油聚氧乙烯(40)醚(EL-40)分别与蓖麻油聚氧乙烯(20)醚(EL-20)复配制备阿维菌素水乳剂,从亲水亲油平衡(HLB)值、临界胶束浓度(cmc)、表面张力等方面分析了二元表面活性剂复配对乳液稳定性的影响;其次,在EL-40与EL-20复配基础上,将苯乙烯基酚聚氧乙烯聚氧丙烯醚(1601),嵌段共聚物(L64)和辛基酚聚氧乙烯醚磷酸酯(A)分别添加到乳液中,从粒径、表面张力和zeta电势等方面考察三元表面活性剂复配对乳液稳定性的影响.结果表明:EL-40与EL-20复配具有较低的表面张力,可制备较稳定的乳液.添加1601和L64对乳液稳定性有一定提高;而添加A大大提高了乳液的稳定性,这是由于A显著降低了液滴粒径和表面张力,增加了zeta电势.  相似文献   

10.
电催化还原二氧化碳制备乙烯是备受关注的热点问题,高效催化剂的制备是决定乙烯产率的关键因素。本文在1-辛基-3-甲基咪唑氯的水溶液(OmimCl : H2O = 1 : 5,体积比)中通过电剥离石墨棒制备了1-辛基-3-甲基咪唑功能化石墨片(ILGS),在水溶液中负载氧化亚铜后得到氧化亚铜/1-辛基-3-甲基咪唑功能化石墨片复合材料(Cu2O/ILGS),通过透射电镜、X射线光电子能谱、拉曼光谱和X射线衍射对其组成和结构进行了系统研究,发现ILGS由多层石墨烯组成,表面富含缺陷。这些缺陷被1-辛基-3-甲基咪唑通过共价键修饰,形成类似鸟巢状的微结构,平均直径5 nm的Cu2O纳米颗粒在石墨片表面均匀分散。在0.1 mol∙L−1碳酸氢钾水溶液中,研究了Cu2O/ILGS在不同电压下催化CO2电还原的性能。结果表明,Cu2O是主要活性中心并在CO2还原过程中被逐渐还原成铜,导致产物的法拉第效率随着反应时间而变,在−1.3 V (vs RHE)电压下,乙烯的法拉第效率最高达到14.8%,其性能归因于Cu2O/ILGS复合材料中的鸟巢状微结构对Cu2O纳米颗粒的稳定作用。  相似文献   

11.
Lignin is a natural aromatic polymer that accounts for nearly 30% of lignocellulose and is considered the only renewable aromatic (re)source for producing aromatic chemicals or liquid fuels via the cleavage of C―O ether bonds and C―C bonds. Thus far, the majority of investigations involving the production of valuable compounds via lignin hydrogenolysis have focused on the cleavage of relatively labile C―O bonds only, which restricts the efficiency of hydrogenolysis. Therefore, in this work, a bifunctional Pt/NbPWO catalyst was synthesized using hydrothermal and wet impregnation methods. It was found that aromatic monomers with a yield of 18.02% could be obtained by breaking the C―O and C―C bonds in alkali lignin. This reaction was applicable to breaking the key C―C bonds when the C―O ether bonds were broken in lignin polymers. The hydrogenolysis mechanism most likely involves the abundant Brønsted acid and Lewis acid sites on the catalyst that facilitate C―C bond activation. Additionally, the synergy between the support and Pt species in the Pt/NbPWO catalyst was primarily emphasized.  相似文献   

12.
由于能源消费需求的持续增长和传统化学燃料的日益枯竭,对可再生能源的需求日益迫切。以地热能、太阳能为代表的可再生能源脱颖而出。然而,这些能源的应用易受到天气、季节、地点和时间的影响,具有不稳定性、随机性、波动性和间歇性。储能技术是解决上述问题的有效途径,它可以在需要的时候储存或释放能量。在各种储能技术可选材料中,相变材料(PCMs)是智能热能管理和便携式热能领域的有力候选者。大多数相变材料都存在导热系数低、环境污染、熔点泄漏等问题,因此有必要将相变材料封装到支撑骨架材料中。事实上,支撑材料在应用中仍面临着一些重大挑战。首先,骨架材料应能抵抗相变材料在相变过程中的体积变化,即具有良好的结构稳定性。其次,还应具有较高的导热系数和较低的泄漏率。石墨烯气凝胶(GA)已被证明是提高相变材料形状稳定性的有效支撑骨架,但相变引起的泄漏和网络结构的脆性是制约其应用的关键问题。在此,我们提出了一种双脉冲电镀的强化策略,用于制备铜@石墨烯气凝胶(Cu@GA)作为相变储能骨架材料。这一结构设计中,石墨烯气凝胶上的石墨烯片层上均匀地镀上了铜层,且不同片之间被铜镀层所连接。这种铜增强石墨烯气凝胶网络结构赋予复合材料良好的导热性和坚固的骨架稳定性,有利于增强相变换热和抑制相变过程中的泄漏。此外,通过真空浸渍法将十八胺(ODA)封装在Cu@GA骨架中,获得了结构稳定性高、泄漏率低的复合相变材料(Cu@GA/ODA),保证了ODA在Cu@GA骨架材料中的均匀分散和填充。通过比较复合相变材料的重量变化,研究了不同骨架对复合相变材料泄漏率的影响。优化后的复合相变材料(CPCM)Cu@GA/ODA经20次储热、放热循环后,泄漏率降低至19.82% (w,质量分数),而GA/ODA和GOA/ODA为骨架的复合相变材料的泄漏率分别为80.31% (w)和72.99% (w)。为了探讨这种影响的原因,用扫描电子显微镜(SEM)观察了循环后骨架的形貌。铜/石墨烯气凝胶(Cu@GA)骨架材料没有明显的收缩或坍塌,仍可以保持完整的三维网络结构,而氧化石墨烯气凝胶(GOA)和石墨烯气凝胶(GA)的骨架材料三维结构不复存在,且在氧化石墨烯/石墨烯片能够观察到明显的裂隙。铜涂层可以提高骨架的微观结构稳定性,有利于提高结构稳定性,降低复合材料的泄漏率。同时,该研究为构建理想的金属增强石墨烯气凝胶复合骨架材料铺平了新的道路,该复合材料具有优异的综合性能,可用于未来的相变储能、多孔微波吸收和储能应用。  相似文献   

13.
电催化过程是实现社会向可再生能源与化学品转型的主要驱动力之一。电催化动力学分析是探索反应机理和建立电催化剂构效关系行之有效的方法。本文将通过三个广泛研究的电催化反应:电化学CO2、CO还原反应和氧还原反应,探讨Tafel分析的普遍过程、隐含假设以及需要注意的问题。此外,本文将介绍电化学反应活化参数的基本概念和关键热力学、动力学变量之间的关系。  相似文献   

14.
钾在石墨中嵌入电位较低,因此石墨负极可使钾离子电池具有较高的能量密度,是一种理想的钾离子电池负极材料。然而,石墨嵌钾后的体积膨胀率高达60%,导致钾离子电池的循环稳定性较差。此外,钾嵌入石墨层间的动力学过程缓慢,制约了钾离子电池倍率性能的提升。在本工作中,我们用还原氧化石墨烯(rGO)包覆剥离石墨(EG),得到一种具有协同效应的层状复合材料。一方面,以少层的EG代替石墨可以减少由于钾的嵌入/脱嵌所引起的体积膨胀和内部应力;另一方面,外层rGO可以避免EG的堆叠,这有利于加速动力学过程并在钾化/去钾化过程中稳定结构。当复合材料所用EG和GO的质量比为1 : 1时,其性能达到最优,在50 mA·g-1的电流密度下能够提供443 mAh·g-1的比容量;在电流密度为800 mA·g-1时,比容量为190 mAh·g-1,保持率为42.9%。相同测试条件下,纯EG和rGO的容量保持率仅为14.2%和27.2%。测试结果说明EG-1/rGO-1复合材料在比容量和倍率性能两个方面得到了提升。  相似文献   

15.
Pt0被认为是NO氧化的活性物种,而催化剂的制备方法对活性物种的含量起着决定性作用。本文采用非惰性气氛保护的改性醇还原-浸渍法(MARI)合成了高分散高Pt0含量的1% (w, 质量分数) Pt/SiO2-Al2O3催化剂(MA-Pt/SA)。X射线粉末衍射(XRD)、CO-漫反射傅里叶变换红外吸收光谱(CO-DRIFTS)和透射电镜(TEM)表征证实在550 ℃焙烧3 h后催化剂的Pt颗粒仅有3.8 nm。同时,X射线光电子能谱(XPS)和H2-程序升温还原(H2-TPR)结果表明催化剂具有高Pt0含量(60.3%)。模拟柴油车尾气气氛进行活性测试,并与传统浸渍法制备的1% (w) Pt/SiO2-Al2O3催化剂(C-Pt/SA)对比,结果显示MA-Pt/SA具有优异的催化氧化性能,其NO最大转化率高达74%,比C-Pt/SA的NO转化率高了23%。经670 ℃高温老化15 h后,老化的MA-Pt/SA的NO转化率仍然高达69%。此外NO + O2共吸附原位漫反射傅里叶变换红外吸收光谱(in situ DRIFTS of NO + O2 co-adsorption)表明高的Pt分散度和高Pt0含量能够促进中间物种桥式硝酸盐的生成及分解,进而导致了优异的NO氧化活性。最后,利用同样方法将Pt的负载量降低至0.5% (w)制备催化剂,NO转化率仍达64%。这种制备方法能够获得低贵金属高性能的Pt基催化剂。  相似文献   

16.
木质素是一种天然芳香族聚合物,约占木质纤维素的30%,是唯一通过裂解C―O醚键和C―C键生产芳香族化学品或液体燃料的可再生芳香族资源。迄今为止,对木质素氢解制备有价值化合物的研究主要集中在相对不稳定的C―O键的裂解上,这限制了木质素氢解的效率。采用水热法和湿浸渍法制备了多功能Pt/NbPWO催化剂。通过破坏碱木质素中的C―O键和C―C键,可以得到产率为18.02%的芳香族单体。该反应不仅可以断裂木质素聚合物中醚键,同时也可以断裂部分关键的C―C键。其氢解机理可能是丰富的Brønsted酸和Lewis酸位点参与了C―C的活化。此外,重点分析载体和Pt物种在Pt/NbPWO催化剂中的协同作用。  相似文献   

17.
电解水是一种常用的制氢方法,但高能耗的阳极析氧反应(OER)阻碍了其应用。尿素氧化反应(UOR)具有较低的热力学电势,是最有前景的OER替代反应之一。过渡金属基水滑石具有独特的层状结构和层间阴离子可交换等优点,被认为是性能优异的UOR催化剂,然而目前大多数研究主要聚焦于后过渡金属元素。该研究通过一步法制备了具有前/后过渡金属的CoV-LDHs纳米片。与相同方法制备的Co(OH)2相比,CoV-LDHs纳米片具有以下优点:1)纳米片结构有利于暴露更多的活性位点。2) V的引入增强了CoV-LDHs的亲水性,提高了其本征电催化动力学。3) Co (3d74s2)和V (3d34s2)之间的d-电子补偿效应有利于促进尿素的吸附。因此,CoV-LDHs仅需要1.52 V (vs. RHE) 就可以达到10 mA∙cm−2的电流密度,比Co(OH)2低了70 mV,同时CoV-LDHs较低的塔菲尔斜率表明了其较快的反应动力学。此外,CoV-LDHs在连续反应10 h后,驱动电位几乎没有增加,表明其具有良好的稳定性。该研究结果不仅证明了前/后过渡金属之间的d-电子补偿效应可以提高UOR催化性能,还为设计高效的UOR催化剂提供了可行的途径。  相似文献   

18.
黄俊达  朱宇辉  冯煜  韩叶虎  谷振一  刘日鑫  杨冬月  陈凯  张相禹  孙威  辛森  余彦  尉海军  张旭  于乐  王华  刘新华  付永柱  李国杰  吴兴隆  马灿良  王飞  陈龙  周光敏  吴思思  卢周广  李秀婷  刘继磊  高鹏  梁宵  常智  叶华林  李彦光  周亮  尤雅  王鹏飞  杨超  刘金平  孙美玲  毛明磊  陈浩  张山青  黄岗  余丁山  徐建铁  熊胜林  张进涛  王莹  任玉荣  杨春鹏  徐韵涵  陈亚楠  许运华  陈子峰  杲祥文  浦圣达  郭少华  李强  曹晓雨  明军  皮欣朋  梁超凡  伽龙  王俊雄  焦淑红  姚雨  晏成林  周栋  李宝华  彭新文  陈冲  唐永炳  张桥保  刘奇  任金粲  贺艳兵  郝晓鸽  郗凯  陈立宝  马建民 《物理化学学报》2022,38(12):2208008
能源的存储和利用是当今科学和技术发展中的重大课题之一,尤其是作为高效的电能/化学能转化装置的二次电池相关技术一直是科学家研究的热点领域。在此背景下,本文较为系统地介绍目前二次电池的重要研究进展,将从二次电池的发展历史引入,再到其相关的基础理论知识的介绍。随后较为详细地讨论当前不同体系的二次电池及相关应的关键材料的研究进展,涉及到锂离子电池、钠离子电池、钾离子电池、镁离子电池、锌离子电池、钙离子电池、铝离子电池、氟离子电池、氯离子电池、双离子电池、锂-硫(硒)电池、钠-硫(硒)电池、钾-硫(硒)电池、多价金属-硫基电池、锂-氧电池、钠-氧电池、钾-氧电池、多价金属-氧气电池、锂-溴(碘)电池、水系金属离子电池、光辅助电池、柔性电池、有机电池、金属-二氧化碳电池等。此外,也介绍了电池研究中常见的电极反应过程表征技术,包括冷冻电镜、透射电镜、同步辐射、原位谱学表征、磁性表征等。本文将有助于研究人员对二次电池进行全面系统的了解与把握,并为之后二次电池的研究提供很好的指导作用。  相似文献   

19.
利用化学沉淀法和溶胶凝胶法,通过两步法成功制备出含有尖晶石钴铁氧体和氧化铜的复合催化剂CoFe2O4/CuO,通过扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和X射线衍射(XRD)对制备出的CoFe2O4/CuO进行表征,探究不同高级氧化体系对磺胺甲恶唑(SMX)去除能力,考察过氧乙酸(PAA)浓度、催化剂投加量、水体中常见干扰物质(Cl-,HCO-3,SO42-,HA)和不同自由基捕获剂对SMX去除的影响。分析结果表明CoFe2O4/CuO同时具有CoFe2O4与CuO的特征,对比单独CoFe2O4与CuO,CoFe2O4/CuO对PAA展现出极高的活化性能,在最佳反应条件下(催化剂投加量=20mg·L-1,c(PAA)=200μ...  相似文献   

20.
将二氧化碳转化为高附加值的燃料和化学品是缓解当前能源危机和控制温室气体排放的有效策略之一,但此法受限于缺乏高活性与高选择性的电催化剂。因此,我们通过热解含镍金属有机框架结构(MOF)和二氰二胺制得负载高含量镍单原子(7.77% (w))的超薄氮掺杂二维碳纳米片用于电催化还原CO2生成CO。研究发现高温热解能将MOF中Ni2+转化为Ni+-N-C和Ni2+-N-C结构,且Ni+-N-C含量依赖于热解温度——其含量随热解温度增加呈现火山型变化。800 ℃下,Ni2+到Ni+-N-C的转化和石墨化的C生成达到最优水平。Ni+-N-C结构有适宜的*CO中间体结合能,能有效地抑制析氢反应的同时还能促进CO生成。因此,800 ℃热处理制得的材料(Ni-N-C-800)催化CO2生成CO效率最高。调节电解液浓度,能进一步优化电催化性能。当电解液(碳酸氢钾)浓度为0.5 mol·L-1时,Ni-N-C-800的CO生成选择性在较宽电压窗口内(-0.77到-1.07 V vs. RHE)都高于90%,且具有优良的稳定性。这些结果表明,选择合适的前躯体通过调控热解温度以及氮掺杂可以有效提高镍基MOF衍生催化剂的二氧化碳电催化性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号