首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have designed and developed two breadboard versions of stand-off Raman spectroscopic systems for landers based on a 5-in. Maksutov-Cassegrain telescope and a small (4-in. diameter) Newtonian telescope receiver. These systems are capable of measuring the Raman spectra of minerals located at a distance of 4.5-66 m from the telescope. Both continuous wave (CW) Ar-ion and frequency doubled Nd:YAG (532 nm) pulsed (20 Hz) lasers are used as excitation sources for measuring remote Raman spectra of rocks and minerals. We have also made complementary measurements on the same rock samples with a micro-Raman system in 180 and 135 degrees geometry for evaluating the system performance and for estimating effect of grain size and laser-induced heating on the spectra of minerals using alpha-quartz as a model mineral. A field portable remote pulsed Raman spectroscopic system based on the 5-in. telescope and an f/2.2 spectrograph has been developed and tested. We have also demonstrated a prototype of a combined Raman and laser-induced breakdown spectroscopy (LIBS) system, capable of providing major element composition and mineralogical information on both biogenic and inorganic minerals at a distance of 10 m from the receiver.  相似文献   

2.
Journal of Radioanalytical and Nuclear Chemistry - To address hidden explosive identification in luggage, a luggage detection system was designed based on PGNAA technology in this study. A...  相似文献   

3.
大口径天文望远镜传递的影像信息是人们认识与了解宇宙的重要手段,因此大口径望远镜面形质量的好坏决定了系统的分辨率。本文介绍了检测大口径光学元件面形的一种方法,即子孔径拼接检测方法。首先分别检测元件各个子孔径的面形数据,最后通过影像处理算法复原面形信息。利用MATLAB软件进行了子孔径拼接算法的仿真,复原抛物面元件的面形。提出了利用数字影像处理和立体视觉影像的方法提高检测面形的精确度。展望了拼接后得到的面形的影像处理算法仍需考虑的因素,对后续研究提出新的挑战。  相似文献   

4.
A pulsed stand-off Raman system has been built and optimised for the qualitative and quantitative analysis of inorganic and organic samples including explosives. The system consists of a frequency doubled Q-switched Nd:YAG laser (532 nm, 10 Hz, 4.4 ns pulse length), aligned coaxially with a 6″ Schmidt–Cassegrain telescope for the collection of Raman scattered light. The telescope was coupled via a fibre optic bundle to an Acton standard series SP-2750 spectrograph with a PI-MAX 1024RB intensified CCD camera equipped with a 500-ps gating option for detection. Gating proved to be essential for achieving high signal-to-noise ratios in the recorded stand-off Raman spectra. In some cases, gating also allowed suppression of disturbing fluorescence signals. For the first time, quantitative analysis of stand-off Raman spectra was performed using both univariate and multivariate methods of data analysis. To correct for possible variation in instrumental parameters, the nitrogen band of ambient air was used as an internal standard. For the univariate method, stand-off Raman spectra obtained at a distance of 9 m on sodium chloride pellets containing varying amounts of ammonium nitrate (0–100%) were used. For the multivariate quantification of ternary xylene mixtures (0–100%), stand-off spectra at a distance of 5 m were used. The univariate calibration of ammonium nitrate yielded R 2 values of 0.992, and the multivariate quantitative analysis yielded root mean square errors of prediction of 2.26%, 1.97% and 1.07% for o-, m- and p-xylene, respectively. Stand-off Raman spectra obtained at a distance of 10 m yielded a detection limit of 174 μg for NaClO3. Furthermore, to assess the applicability of stand-off Raman spectroscopy for explosives detection in “real-world” scenarios, their detection on different background materials (nylon, polyethylene and part of a car body) and in the presence of interferents (motor oil, fuel oil and soap) at a distance of 20 m was also investigated.  相似文献   

5.
Journal of Radioanalytical and Nuclear Chemistry - Developing an online monitoring system becomes useful for continuously detection of tritium in water. A plastic scintillator chamber was used to...  相似文献   

6.
7.
We report our initial efforts to use a small portable Raman system for stand-off detection and identification of various types of organic chemicals including benzene, toluene, ethyl benzene and xylenes (BTEX). Both fiber-optic (FO) coupled and a directly coupled f/2.2 spectrograph with the telescope have been developed and tested. A frequency-doubled Nd:YAG pulsed laser (20 Hz, 532 nm, 35 mJ/pulse) is used as the excitation source. The operational range of the FO coupled Raman system was tested to 66 m, and the directly coupled system was tested to a distance of 120 m. We have also measured remote Raman spectra of compressed methane gas and methane gas hydrate. The usefulness of the remote Raman system for identifying unknown compounds is demonstrated by measuring stand-off spectra of two plastic explosives, e.g. tri-amino tri-nitrobenzene (TATB) and beta-HMX at 10 m stand-off distance. The remote Raman system will be useful for terrestrial applications such as monitoring environmental pollution, in identifying unknown materials in public places in 10s or less, and for detecting hydrocarbon plumes and gas hydrates on planetary surfaces such as Mars.  相似文献   

8.
Stand-off Raman detection using dispersive and tunable filter based systems   总被引:1,自引:0,他引:1  
Small, transportable Raman systems are being developed for stand-off Raman measurements at intermediate ranges (e.g. <20 m) for planetary measurements. Four variations of stand-off Raman systems are described that use a small telescope for light collection that is either fiber-optic or lens-coupled to a detection system. The performance of an acousto-optic tunable filter for wavelength selection and spectral imaging is tested by comparing signal-to-noise ratio and throughput to similar measurements using a conventional spectrograph, and by measuring a variety of organic and inorganic mineral samples at distances up to 15 m. We also determine optimal ICCD gate widths for acquiring remote Raman spectra under high ambient light conditions.  相似文献   

9.
Journal of Radioanalytical and Nuclear Chemistry - This paper introduces and describes the initial characterizations of a prototype beta-gamma coincidence detection system that utilizes a PIPSBox...  相似文献   

10.
Ion-beam surface analysis of light elements such as oxygen and carbon in light matrices (boron in our case) is mainly subject to matrix interferences. Using a telescope detection system we show that (d, p) reaction for carbon and proton backscattering for oxygen are able to lead to concentration profiles on the first microns of bulk boron samples. Data processing is described and analytical results are shown, making evidence of the purification obtained using electronic bombardment furnace. Comparing with other phhsical methods of analysis, limitation and improvements of this procedure are discussed.   相似文献   

11.
Journal of Radioanalytical and Nuclear Chemistry - This paper describes an early-stage evaluation of a purpose-designed extraction/detection system that can be deployed by non-specialists either...  相似文献   

12.
Nuclear forensics continues to be an integral part of the Domestic Nuclear Detection Office, the Defense Threat Reduction Agency and the National Nuclear Security Administration. As with our previous three-year Nuclear Forensics Education Award Program we will continue to offer a comprehensive educational program and closely collaborate with national laboratories to pursue common research. Our research will primarily focus on analysis of radioactive debris following a nuclear or radiological dispersive device event or the investigation of the pedigree of nuclear materials in nonproliferation. This research will include using Compton suppression and gamma coincidence low-level gamma ray counting, investigation of nuclear fuel cycles for nonproliferation, on-site inspection within the context of the Comprehensive Nuclear-Test-Ban Treaty and radioxenon detection physics. We also offer a graduate program in nuclear robotics, an interdisciplinary program in the automation of handling special nuclear materials. To better equip our students who are entering the workforce at the national laboratories and government agencies we are also proposing the development of several new laboratory modules for non-destructive identification of fission products in environmental samples and irradiated uranium specimens at various enrichments and characterizing naturally occurring radioactive material. Collaboration with Florida Memorial University a Historically Black Colleges and Universities will continue for training and collaborative research.  相似文献   

13.
Vibrational spectroscopy standoff detection of explosives   总被引:1,自引:0,他引:1  
Standoff infrared and Raman spectroscopy (SIRS and SRS) detection systems were designed from commercial instrumentation and successfully tested in remote detection of high explosives (HE). The SIRS system was configured by coupling a Fourier-transform infrared interferometer to a gold mirror and detector. The SRS instrument was built by fiber coupling a spectrograph to a reflective telescope. HE samples were detected on stainless steel surfaces as thin films (2–30 μg/cm2) for SIRS experiments and as particles (3–85 mg) for SRS measurements. Nitroaromatic HEs: TNT, DNT, RDX, C4, and Semtex-H and TATP cyclic peroxide homemade explosive were used as targets. For the SIRS experiments, samples were placed at increasing distances and an infrared beam was reflected from the stainless steel surfaces coated with the target chemicals at an angle of ∼180° from surface normal. Stainless steel plates containing TNT and RDX were first characterized for coverage distribution and surface concentration by reflection–absorption infrared spectroscopy. Targets were then placed at the standoff distance and SIRS spectra were collected in active reflectance mode. Limits of detection (LOD) were determined for all distances measured for the target HE. LOD values of 18 and 20 μg/cm2 were obtained for TNT and RDX, respectively, for the SIR longest standoff distance measured. For SRS experiments, as low as 3 mg of TNT and RDX were detected at 7 m source–target distance employing 488 and 514.5 nm excitation wavelengths. The first detection and quantification study of the important formulation C4 is reported. Detection limits as function of laser powers and acquisition times and at a standoff distance of 7 m were obtained.  相似文献   

14.
An on-line purge and trap system for continuous monitoring of Volatile Organic Compounds (VOC) is presented. The purge chamber was designed for continuous extraction of VOC from water with nitrogen. The analytes were preconcentrated on a microtrap prior to analysis by GC with flame ionization detection. The microtrap served as a fast injection device for carrying out analysis at high frequency. Continuous monitoring was accomplished by performing injections at fixed intervals. This system showed high sensitivity, high precision, detection limits at the ppb level, and stable response over long periods of continuous operation. Factors affecting system performance were studied. A predictive model based on gas-liquid partitioning is also presented.  相似文献   

15.
In 2003–2004, several food items were purchased from large commercial outlets in Coimbra, Portugal. Such items included meats (chicken, pork, beef), eggs, rice, beans and vegetables (tomato, carrot, potato, cabbage, broccoli, lettuce). Elemental analysis was carried out through INAA at the Technological and Nuclear Institute (ITN, Portugal), the Nuclear Energy Centre for Agriculture (CENA, Brazil), and the Nuclear Engineering Teaching Lab of the University of Texas at Austin (NETL, USA). At the latter two, INAA was also associated to Compton suppression. It can be concluded that by applying Compton suppression (1) the detection limits for arsenic, copper and potassium improved; (2) the counting-statistics error for molybdenum diminished; and (3) the long-lived zinc had its 1115-keV photopeak better defined. In general, the improvement sought by introducing Compton suppression in foodstuff analysis was not significant. Lettuce, cabbage and chicken (liver, stomach, heart) are the richest diets in terms of human nutrients.  相似文献   

16.
A neutron induced prompt γ -ray spectrometry (NIPS) facility has been developed at the Nuclear Chemistry Research Division, of the Korea Atomic Energy Research Institute (KAERI) with the aim of analyzing the major components of various elements in aqueous samples. The facility is equipped with a 252Cf neutron source and a γ-γ coincidence setup with two n-type coaxial HPGe detectors based on NIM spectrometric modules in association with data acquisition and spectral analysis systems. The development of the system, its set-up and the calibration of detection efficiency up to 8 MeV using a set of radionuclides and the (n,γ) reactions of chlorine are described in the paper. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Nuclear magnetic resonance is often the technique of choice in chemical analysis because of its sensitivity to molecular structure, quantitative character, and straightforward sample preparation. However, determination of trace analytes in complex mixtures is generally limited by low sensitivity and extensive signal overlap. Here, we present an approach for continuous hyperpolarization at high magnetic field that is based on signal amplification by reversible exchange (SABRE) and can be straightforwardly incorporated in multidimensional NMR experiments. This method was implemented in a 2D correlation experiment that allows detection and quantification of analytes at nanomolar concentration in complex solutions.  相似文献   

18.
A global radionuclide monitoring system is being engineered as part of a multi-technology verification system for the Comprehensive Nuclear Test Ban Treaty. The system detects airborne radioactive aerosols and gases that can indicate nuclear weapons test debris. The backbone of the system is a network of 80 remote detection stations that utilize high-volume air sampling and high-resolution gamma spectrometry to provide in-situ assay and near-real time reporting. These stations are linked to the International Data Centre, which is a central data processing hub where raw spectral data is automatically processed, analyzed, and disseminated to the states parties. Measurements are categorized based on spectral content to determine which contain anomalous anthropogenic radionuclides that require intensive radiochemical analysis at a certified laboratory. The resulting system has the capability to measure microbecquerel concentrations of radionuclides and provide accessible data products within minutes of field measurements. During the past year of international operations, the minimum detectable concentrations and spectroscopy processing statistics were recorded as a function of geographical location and time. The results show that this system is an effective tool for nuclear test monitoring, as well as other applications such as radiological emergency response, public health monitoring, and scientific research.  相似文献   

19.
The determination of uranium in organic solutions by inductively coupled plasma atomic emission spectrometry is reported. The conditions for achieving plasma stability were determined as well as the optimum conditions (RF power, observation height and argon flow) of a spectrometer for analysis of U(II) 367.007 nm in three organic solvents, xylene, kerosine and benzene. The effects of RF power and observation height on signal-to-back-ground ratio and the detection limits are considered. Spectral interferences due to CN band are discussed.A part of this work was presented at the Second Karlsruhe International Conference on Analytical Chemistry in Nuclear Technology Karlsruhe, FRG, June 5–9, 1989.  相似文献   

20.
The hyphenation of small-volume separations to information-rich detection offers the promise of unmatched analytical information on the components of complex mixtures. Nuclear magnetic resonance (NMR) spectroscopy provides information about molecular structure, although sensitivity remains an issue for on-line NMR detection. This is especially true when hyphenating NMR to capillary separations as the observation time and analyte mass are decreased to the point where reduced information is obtained from the eluting analytes. Because of these limitations, advances in instrumental performance have a large impact on the overall performance of a separation–NMR system. Instrumental aspects and the capabilities of cLC–NMR, CEC–NMR and CE–NMR are reviewed, and applications that have used this technology highlighted. Recent trends towards small volume capillary scale separations are emphasized, as is the recent success of capillary-isotachophoresis (cITP)–NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号