首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文以定量检测甲基丙烯酸甲酯(MMA)本体聚合反应过程中的增长自由基为例,介绍了如何用电子顺磁共振(EPR)方法定量检测极性溶剂中的低浓度自由基。详细地介绍了用自制的扁平样品池有效地克服了极性溶剂的非共振吸收现象,用计算机减谱的方法扣除了比信号大很多的背景信号。  相似文献   

2.
恒温炉中加热管石墨表面结构和物理性质,直接影响分析试样的原子化行为。目前,利用热解涂层石墨管改善原子吸收分析灵敏度,已被人们重视并广泛应用[1-2]。本文采用Woodriff炉做原子化器,对Al、K、Ag、Cd在普通石墨管和玻璃碳管中的原子化行为进行了研究,结果四种元素在玻璃碳管中的灵敏度均获得提高。  相似文献   

3.
The vibrational energy dissipation process of the ground-state azulene in supercritical xenon, carbon dioxide, and ethane has been studied by the transient grating spectroscopy. In this method, azulene in these fluids was photoexcited by two counterpropagating subpicosecond laser pulses at 570 nm, which created a sinusoidal pattern of vibrationally hot ground-state azulene inside the fluids. The photoacoustic signal produced by the temperature rise of the solvent due to the vibrational energy relaxation of azulene was monitored by the diffraction of a probe pulse. The temperature-rise time constants of the solvents were determined at 383 and 298 K from 0.7 to 2.4 in rho(r), where rho(r) is the reduced density by the critical density of the fluids, by the fitting of the acoustic signal based on a theoretical model equation. In xenon, the temperature-rise time constant was almost similar to the vibrational energy-relaxation time constant of the photoexcited solute determined by the transient absorption measurement [D. Schwarzer, J. Troe, M. Votsmeier, and M. Zerezke, J. Chem. Phys. 105, 3121 (1996)] at the same reduced density irrespective of the solvent temperature. On the other hand, the temperature-rise time constants in ethane were larger than the vibrational energy-relaxation time constants by a factor of about 2. In carbon dioxide, the difference was small. From these results, the larger time constants of the solvent temperature rise than those of the vibrational energy relaxation in ethane and carbon dioxide were interpreted in terms of the vibrational-vibrational (V-V) energy transfer between azulene and solvent molecules and the vibrational-translational (V-T) energy transfer between solvent molecules. The contribution of the V-V energy transfer process against the V-T energy transfer process has been discussed.  相似文献   

4.
In this study, we examine the temperature dependence of free energetics of nanotube association using graphical processing unit‐enabled all‐atom molecular dynamics simulations (FEN ZI) with two (10,10) single‐walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion, and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intratube and the bulk solvent. By calculating the fluctuation of coarse‐grained tube‐solvent surfaces, we found that tube–water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent‐like medium in the absence of water, tube–anion interfacial fluctuation shows similar but weaker dependence on temperature, while tube–cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and interpretations of hydrophobicity in terms of alternative but parallel signatures such as interfacial fluctuations, dewetting transitions, and enhanced fluctuation probabilities at interfaces. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
In the present investigation, we studied the enzymatic synthesis of monoacylglycerols (MAG) and diacylglycerols (DAG) via the esterification of saturated fatty acids (stearic, palmitic and an industrial residue containing 87% palmitic acid) and glycerol in a solvent‐free system. Three immobilized lipases (Lipozyme RM IM, Lipozyme TL IM and Novozym 435) and different reaction conditions were evaluated. Under the optimal reaction conditions, esterifications catalyzed by Lipozyme RM IM resulted in a mixture of MAG and DAG at high conversion rates for all of the substrates. In addition, except for the reaction of industrial residue at atmospheric pressure, all of these products met the World Health Organization and European Union directives for acylglycerol mixtures for use in food applications. The products were quantified by 13C NMR, with the aid of an external reference signal which was generated from a sealed coaxial tube filled with acetonitrile‐d3. After calibrating the area of this signal using the classical external reference method, the same coaxial tube was used repeatedly to quantify the reaction products. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
High-pressure carbon dioxide in contact with water dissolves to form carbonic acid, causing a decrease in pH. By use of these characteristics of a CO2/H2O biphasic system, chitosan-coated cationic liposomes of l-alpha-dipalmitoylphosphatidylcholine were successfully prepared by an improved supercritical reverse-phase evaporation (ISCRPE) method. Liposome-chitosan complexes carrying a positive charge were prepared in a single-step procedure without the use of acid or organic solvent, including ethanol. The maximum trapping efficiency of liposomes prepared by the ISCRPE method was 17%, with or without the addition of chitosan, compared to only 2% for liposomes prepared by the Bangham method. Furthermore, the liposomal dispersion was stable at room temperature in a sealed tube for over 30 days.  相似文献   

7.
Summary The use of glassy carbon as a tube material in electrothermal atomic absorption spectrometry requires modifications to the power supply if temperatures and heating rates comparable to those for graphite tubes are to be obtained. Glassy carbon tubes frequently have a longer lifetime than pyrolytic graphite coated tubes made of polycrystalline electrographite. Peak height sensitivity for glassy carbon is better by a factor of two for some volatile elements, but up to a factor of five inferior for less volatile elements than that for pyrolytic graphite coated tubes. Peak area sensitivity is generally inferior by about a factor of two. Sample volume is limited to 5–10 l because of the smooth surface.From the signal shape it can be deduced that adsorption of analyte atoms at the tube wall plays an important role in glassy carbon, and is responsible at least in part for the lower sensitivity. Non-spectral interferences can be less pronounced in glassy carbon tubes for those interferents which interact with graphite tube surfaces. Glassy carbon is, however, no alternative to pyrolytic graphite coated tubes.
Glasartiger Kohlenstoff als Rohrmaterial für elektrothermische Atomabsorptionsspektrometrie
  相似文献   

8.
Lysozyme has been successfully used to solvate carbon nanotubes (CNT). Extensive molecular dynamics simulations show that 1) a favorite site of adsorption exists, 2) the protein–tube interaction region is located far from the active site, 3) two protein helices act as a tweezer that grips the nanotube, 4) a localized protein re‐arrangement hides the tube from the solvent, and 5) aminic and amidic moieties of lysozyme behave similarly to surfactants in the solvation of the tube.  相似文献   

9.
A glassy carbon pyrolysis tube holding a filling of carbon granules, protected from atmospheric oxygen by the carrier gas and an aluminum oxide ceramic mantle tube, has been successfully used for the first time in the microdetermination of oxygen. The reaction temperature of 1300 °C assures the quantitative transformation of oxygen to carbon monoxide, which is measured by infrared detection. The analysis of fluorine, phosphorus and alkali metal containing compounds is now possible. A 10% hydrogen content in the nitrogen carrier gas enhances liberation of oxygen in organometallic compounds. The method is applicable to sample weights between 0.1 and 5 mg and the time required for one analysis is 100 s.  相似文献   

10.
Summary An analytical procedure has been developed for simultaneous determination of solvent mixture vapors to enable evaluation of occupational exposure. To determine the desorption efficiency the volatile components of the solvent mixtures were generated from a glass tube filled with glass wool. This device is easy to prepare and use. These vapors were then collected in activated charcoal tubes and analyzed by capillary gas chromatography. The method was tested with a mixture of 22 solvents, including aliphatic and aromatic hydrocarbons, alcohols, ethers, esters, and ketones, all at low concentrations. All the components were detected. When a 99∶1 mixture of carbon disulfide-dimethylformamide was used for desorption the efficiency was>75% for most of the solvents.  相似文献   

11.
A dispersive liquid‐liquid microextraction (DLLME) technique was proposed for the enrichment and graphite furnace atomic absorption spectrometric (GFAAS) determination of Cu2+ in water samples. In this method a mixture of 480 μL acetone (disperser solvent) containing 26 μg S,S‐bis(2‐aminobenzyl)‐dithioglyoxime (BAT) ligand and 20 μL carbon tetrachloride (extraction solvent) was rapidly injected by a syringe into 5 mL aqueous sample containing copper ions (analyte). Thereby, a cloudy solution formed. After centrifugation, the fine droplets containing the extracted copper complex were sedimented at the bottom of the conical test tube. This phase was collected by a microsyring and after dilution by methanol, 20 μL of it was injected into the graphite tube of the instrument for analysis. Effects of some parameters on the extraction, such as extraction and disperser solvent type and volume, extraction time, salt concentration, pH and concentration of the chelating agent were optimized. The response surface method was used for optimization of the effective parameters on the extraction recovery. Under these conditions, an enrichment factor of 312 was obtained. The calibration graph was linear in the rage of 2–50 μ L−1 Cu2+ with a detection limit of 0.03 μg L−1 and a relative standard deviation (RSD) for five replicate measurements of 3.4% at 20 μg L−1 Cu2+. The method was successfully applied to the determination of Cu2+ in some spring water samples.  相似文献   

12.
The thermolysis of dicarbonylcyclopentadienyliron dimer in a sealed tube at 300°C has been reported to produce ferrocene, carbon monoxide, carbon dioxide, cyclopentadiene and elemental iron. We observe in addition to these products the production of biferrocene and elemental carbon. Thermolysis of carbonylcyclopentadienyliron tetramer (produced from the dimer by thermolysis in refluxing xylene) produces ferrocene, iron and carbon monoxidre; no biferrocene, carbon dioxide or elemental carbon are produced. A scheme is proposed to account for these products.  相似文献   

13.
Lysozyme has been successfully used to solvate carbon nanotubes (CNT). Extensive molecular dynamics simulations show that 1) a favorite site of adsorption exists, 2) the protein-tube interaction region is located far from the active site, 3) two protein helices act as a tweezer that grips the nanotube, 4) a localized protein re-arrangement hides the tube from the solvent, and 5) aminic and amidic moieties of lysozyme behave similarly to surfactants in the solvation of the tube.  相似文献   

14.

Rapid, inexpensive, and efficient sample-preparation by dispersive liquid–liquid microextraction (DLLME) then gas chromatography with flame ionization detection (GC–FID) have been used for extraction and analysis of BTEX compounds (benzene, toluene, ethylbenzene, and xylenes) in water samples. In this extraction method, a mixture of 25.0 μL carbon disulfide (extraction solvent) and 1.00 mL acetonitrile (disperser solvent) is rapidly injected, by means of a syringe, into a 5.00-mL water sample in a conical test tube. A cloudy solution is formed by dispersion of fine droplets of carbon disulfide in the sample solution. During subsequent centrifugation (5,000 rpm for 2.0 min) the fine droplets of carbon disulfide settle at the bottom of the tube. The effect of several conditions (type and volume of disperser solvent, type of extraction solvent, extraction time, etc.) on the performance of the sample-preparation step was carefully evaluated. Under the optimum conditions the enrichment factors and extraction recoveries were high, and ranged from 122–311 to 24.5–66.7%, respectively. A good linear range (0.2–100 μg L−1, i.e., three orders of magnitude; r 2 = 0.9991–0.9999) and good limits of detection (0.1–0.2 μg L−1) were obtained for most of the analytes. Relative standard deviations (RSD, %) for analysis of 5.0 μg L−1 BTEX compounds in water were in the range 0.9–6.4% (n = 5). Relative recovery from well and wastewater at spiked levels of 5.0 μg L−1 was 89–101% and 76–98%, respectively. Finally, the method was successfully used for preconcentration and analysis of BTEX compounds in different real water samples.

  相似文献   

15.
In general, volatile organic compounds in ambient air are quantified by following a well‐defined standard calibration procedure using a gas‐/liquid‐phase standard. If the liquid standard is analyzed by a thermal desorption, the solvent effect is unavoidable through the alteration of breakthrough properties or retention times. To learn more about the variables of the thermal desorption‐based analysis, the effect of pre‐purge conditions was evaluated for 18 volatile organic compounds with different types of sorbent tube materials by fixing standard volume (1 μL) and flow rate (100 mL/min). The gas phase calibration was also carried out as reference for the non‐solvent effect. A single tube filled with Tenax TA exhibited the least solvent effect with the short pre‐purge (1 min), while being subject to the breakthrough at or above 10 min pre‐purge. For a three‐bed sorbent tube with Carboxen 1000, at least 10 min of pre‐purge was needed for the compounds with a retention time close to methanol (e.g., propanal). Another three‐bed tube with Carbopack X reduced the solvent effect efficiently for a short pre‐purge (2 min) without the breakthrough. As such, the solvent effect can be adjusted by the proper control of the sorbent tube application.  相似文献   

16.
IntroductionTherehasbeenanincreasedinterestinthethermodynamicbehaviorofternarymixtures(water+nonaqueoussolvent+electrolyte)[1].However,therehasbeenashortageofinvestigationsonsuchmixtures,especiallyonaromaticsolutesthatcontainthesubstituent.Littleiskn…  相似文献   

17.
Simple modifications have been described for the simultaneous microdetermination of carbon, hydrogen, and arsenic or selenium in organic compounds using the rapid straight empty tube combustion technique. A silica insertion tube placed in the combustion tube at the open end of the ignition capsule and cooled via external exposure of the combustion tube around it to a stream of air, was found to be suitable for the quantitative retention of arsenic trioxide produced during the combustion of organo-arsenic compounds. The same modification was proved to be suitable for complete trapping of selenium dioxide produced in the combustion of organo-selenium compounds. In the latter case, the insertion tube was packed at one end with a short silica wool plug and cooling it with air is unnecessary.Using these simple modifications, accurate and reproducible carbon, hydrogen, and arsenic or selenium results were obtained in the analysis of a wide range of organic compounds containing arsenic or selenium. The conventional gravimetric finish was employed for the evaluation of three elements.  相似文献   

18.
液相色谱电化学检测抗结核药物—异烟肼   总被引:3,自引:0,他引:3  
李惠梅  汪尔康 《分析化学》1993,21(5):550-553
本文讨论了以无有机溶剂存在的水溶液为流动相异烟肼的液相色谱一薄层安培检测法。在所选定的实验条件下,检测限达2ng。应用本法分析了片剂中异烟肼的含量  相似文献   

19.
Noncatalytic reaction pathways and rates of dimethyl ether (DME) in supercritical water are determined in a tube reactor made of quartz according to liquid- and gas-phase 1H and 13C NMR observations. The reaction is studied at two concentrations (0.1 and 0.5 M) in supercritical water at 400 degrees C and over a water-density range of 0.1-0.6 g/cm3. The supercritical water reaction is compared with the neat one (in the absence of solvent) at 0.1 M and 400 degrees C. DME is found to decompose through (i) the proton-transferred fragmentation to methane and formaldehyde and (ii) the hydrolysis to methanol. Formaldehyde from reaction (i) is consecutively subjected to four types of redox reactions. Two of them proceed even without solvent: (iii) the unimolecular proton-transferred decarbonylation forming hydrogen and carbon monoxide and (iv) the bimolecular self-disproportionation generating methanol and carbon monoxide. When the solvent water is present, two additional paths are open: (v) the bimolecular self-disproportionation of formaldehyde with reactant water, producing methanol and formic acid, and (vi) the bimolecular cross-disproportionation between formaldehyde and formic acid, yielding methanol and carbonic acid. Methanol is produced through the three types of disproportionations (iv)-(vi) as well as the hydrolysis (ii). The presence of solvent water decelerates the proton-transferred fragmentation of DME; the rate constant is reduced by 40% at 0.5 g/cm3. This is caused by the suppression of low-frequency concerted motion corresponding to the reaction coordinate for the simultaneous C-O bond scission and proton transfer from one methyl carbon to the other. In contrast to the proton-transferred fragmentation, the hydrolysis of DME is markedly accelerated by increasing the water density. The latter becomes more important than the former in supercritical water at densities greater than 0.5 g/cm3.  相似文献   

20.
Ishizaki M  Ueno S 《Talanta》1979,26(7):523-526
A highly sensitive and simple method for determination of vanadium in plants and biological samples by solvent extraction and flameless atomic-absorption spectrometry with a carbon tube coated with pyrolytic graphite is described. After digestion of the sample, vanadium is separated by extraction of its N-cinnamoyl-N-2,3-xylylhydroxylamine complex into carbon tetrachloride from 6M hydrochloric acid medium. The method can be used to determine vanadium in plants and biological samples with average recovery of 94% and coefficient of variation of 14%. The sensitivity (1% absorption) is estimated to be 4 x 10(-11) g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号