首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysozyme has been successfully used to solvate carbon nanotubes (CNT). Extensive molecular dynamics simulations show that 1) a favorite site of adsorption exists, 2) the protein-tube interaction region is located far from the active site, 3) two protein helices act as a tweezer that grips the nanotube, 4) a localized protein re-arrangement hides the tube from the solvent, and 5) aminic and amidic moieties of lysozyme behave similarly to surfactants in the solvation of the tube.  相似文献   

2.
In addition to the chemical nature of the surface, the dimensions of the confining host exert a significant influence on confined protein structures; this results in immense biological implications, especially those concerning the enzymatic activities of the protein. This study probes the structure of hemoglobin (Hb), a model protein, confined inside silica tubes with pore diameters that vary by one order of magnitude (≈20–200 nm). The effect of confinement on the protein structure is probed by comparison with the structure of the protein in solution. Small‐angle neutron scattering (SANS), which provides information on protein tertiary and quaternary structures, is employed to study the influence of the tube pore diameter on the structure and configuration of the confined protein in detail. Confinement significantly influences the structural stability of Hb and the structure depends on the Si‐tube pore diameter. The high radius of gyration (Rg) and polydispersity of Hb in the 20 nm diameter Si‐tube indicates that Hb undergoes a significant amount of aggregation. However, for Si‐tube diameters greater or equal to 100 nm, the Rg of Hb is found to be in very close proximity to that obtained from the protein data bank (PDB) reported structure (Rg of native Hb=23.8 Å). This strongly indicates that the protein has a preference for the more native‐like non‐aggregated state if confined inside tubes of diameter greater or equal to 100 nm. Further insight into the Hb structure is obtained from the distance distribution function, p(r), and ab initio models calculated from the SANS patterns. These also suggest that the Si‐tube size is a key parameter for protein stability and structure.  相似文献   

3.
An artificial site‐selective DNA cutter to hydrolyze single‐stranded DNA at a desired site was prepared from CeIV/ethylenediamintetraacetic acid (EDTA) and two ethylenediamine‐N,N,N′,N′‐tetrakis(methylenephosphonic acid)–oligonucleotide conjugates. By using this cutter, the sense strand of a blue fluorescent protein (BFP) gene was selectively cut at a predetermined site in the chromophore‐coding region. The upstream fragment obtained by the site‐selective scission was ligated with the downstream fragment of the closely related green fluorescent protein (GFP) gene so that the 5′‐ and 3′‐end portions of the chromophore came from the BFP fragment and the GFP fragment, respectively. The recombinant gene was successfully expressed in E. coli and the chimeric chromophore emitted green fluorescence as expected.  相似文献   

4.
Homogeneous antibody–drug conjugates (ADCs), generated by site‐specific toxin linkage, show improved therapeutic indices with respect to traditional ADCs. However, current methods to produce site‐specific conjugates suffer from low protein expression, slow reaction kinetics, and low yields, or are limited to particular conjugation sites. Here we describe high yielding expression systems that efficiently incorporate a cyclopropene derivative of lysine (CypK) into antibodies through genetic‐code expansion. We express trastuzumab bearing CypK and conjugate tetrazine derivatives to the antibody. We show that the dihydropyridazine linkage resulting from the conjugation reaction is stable in serum, and generate an ADC bearing monomethyl auristatin E that selectively kills cells expressing a high level of HER2. Our results demonstrate that CypK is a minimal bioorthogonal handle for the rapid production of stable therapeutic protein conjugates.  相似文献   

5.
Atomistic simulations of dioxygen (O2) dynamics and migration in nitric oxide‐bound truncated Hemoglobin N (trHbN) of Mycobacterium tuberculosis are reported. From more than 100 ns of simulations the connectivity network involving the metastable states for localization of the O2 ligand is built and analyzed. It is found that channel I is the primary entrance point for O2 whereas channel II is predominantly an exit path although access to the protein active site is also possible. For O2 a new site compared to nitric oxide, from which reaction with the heme group can occur, was found. As this site is close to the heme iron, it could play an important role in the dioxygenation mechanism as O2 can remain there for hundreds of picoseconds after which it can eventually leave the protein, while NO is localized in Xe2. The present study supports recent experimental work which proposed that O2 docks in alternative pockets than Xe close to the reactive site. Similar to other proteins, a phenylalanine residue (Phe62) plays the role of a gate along the access route in channel I. The most highly connected site is the Xe3 pocket which is a “hub” and free energy barriers between the different metastable states are ≈1.5 kcal mol?1 which allows facile O2 migration within the protein.  相似文献   

6.
Cell‐membrane‐spanning G protein coupled receptors (GPCRs) belong to the most important therapeutic target structures. Endogenous transmitters bind from the outer side of the membrane to the “orthosteric” binding site either deep in the binding pocket or at the extracellular N‐terminal end of the receptor protein. Exogenous modulators that utilize a different, “allosteric”, binding site unveil a pathway to receptor subtype‐selectivity. However, receptor activation through the orthosteric area is often more powerful. Recently there has been evidence that orthosteric/allosteric, in other words “dualsteric”, hybrid compounds unite subtype selectivity and receptor activation. These “bitopic” modulators channelreceptor activation and subsequent intracellular signaling into a subset of possible routes. This concept offers access to GPCR modulators with an unprecedented receptor‐subtype and signaling selectivity profile and, as a consequence, to drugs with fewer side effects.  相似文献   

7.
In proteins with buried active sites, understanding how ligands migrate through the tunnels that connect the exterior of the protein to the active site can shed light on substrate specificity and enzyme function. A growing body of evidence highlights the importance of protein flexibility in the binding site on ligand binding; however, the influence of protein flexibility throughout the body of the protein during ligand entry and egress is much less characterized. We have developed a novel tunnel prediction and evaluation method named IterTunnel, which includes the influence of ligand‐induced protein flexibility, guarantees ligand egress, and provides detailed free energy information as the ligand proceeds along the egress route. IterTunnel combines geometric tunnel prediction with steered molecular dynamics in an iterative process to identify tunnels that open as a result of ligand migration and calculates the potential of mean force of ligand egress through a given tunnel. Applying this new method to cytochrome P450 2B6, we demonstrate the influence of protein flexibility on the shape and accessibility of tunnels. More importantly, we demonstrate that the ligand itself, while traversing through a tunnel, can reshape tunnels due to its interaction with the protein. This process results in the exposure of new tunnels and the closure of preexisting tunnels as the ligand migrates from the active site. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Paramagnetic effects from lanthanide ions present powerful tools for protein studies by nuclear magnetic resonance (NMR) spectroscopy provided that the lanthanide can be site‐specifically and rigidly attached to the protein. A new, particularly small and rigid lanthanide‐binding tag, 3‐mercapto‐2,6‐pyridinedicarboxylic acid (3MDPA), was synthesized and attached to two different proteins via a disulfide bond. The complexes of the N‐terminal domain of the E. coli arginine repressor (ArgN) with seven different paramagnetic lanthanide ions and Co2+ were analyzed in detail by NMR spectroscopy. The magnetic susceptibility anisotropy (Δχ) tensors and metal position were determined from pseudocontact shifts. The 3MDPA tag generated very different Δχ tensor orientations compared to the previously studied 4‐mercaptomethyl‐DPA tag, making it a highly complementary and useful tool for protein NMR studies.  相似文献   

9.
We show by quantum mechanical/molecular mechanical (QM/MM) simulations that phenylbenzothiazoles undergoing an excited‐state proton transfer (ESPT) can be used to probe protein binding sites. For 2‐(2′‐hydroxy‐4′‐aminophenyl)benzothiazole (HABT) bound to a tyrosine kinase, the absolute and relative intensities of the fluorescence bands arising from the enol and keto forms are found to be strongly dependent on the active‐site conformation. The emission properties are tuned by hydrogen‐bonding interactions of HABT with the neighboring amino acid T766 and with active‐site water. The use of ESPT tuners opens the possibility of creating two‐color fluorescent markers for protein binding sites, with potential applications in the detection of mutations in cancer cell lines.  相似文献   

10.
A new chemical method to site‐specifically modify natural proteins without the need for genetic manipulation is described. Our strategy involves the affinity‐labeling‐based attachment of a unique reactive handle at the surface of the target protein, and the subsequent selective transformation of the reactive handle by a bioorthogonal reaction to introduce a variety of functional probes into the protein. To demonstrate this approach, we synthesized labeling reagents that contain: 1) a benzenesulfonamide ligand that directs specifically to bovine carbonic anhydrase II (bCA), 2) an electrophilic epoxide group for protein labeling, 3) an exchangeable hydrazone bond linking the ligand and the epoxide group, and 4) an iodophenyl or acetylene handle. By incubating the labeling reagent with bCA, the reactive handle was covalently attached at the surface of bCA through epoxide ring opening. Either after or before removing the ligand by a hydrazone/oxime‐exhange reaction, which restores the enzymatic activity, the reactive handle incorporated could be derivatized by Suzuki coupling or Huisgen cycloaddition reactions. This method is also applicable to the target‐specific multiple modification in a protein mixture. The availability of various (photo)affinity‐labeling reagents and bioorthogonal reactions should extend the flexibility of this strategy for the site‐selective incorporation of many functional molecules into proteins.  相似文献   

11.
One useful synthetic reaction missing from nature's toolbox is the direct hydrogenation of substrates using hydrogen. Instead nature uses cofactors like NADH to reduce organic substrates, which adds complexity and cost to these reductions. To create an enzyme that can directly reduce organic substrates with hydrogen, researchers have combined metal hydrogenation catalysts with proteins. One approach is an indirect link where a ligand is linked to a protein and the metal binds to the ligand. Another approach is direct linking of the metal to protein, but nonspecific binding of the metal limits this approach. Herein, we report a direct hydrogenation of olefins catalyzed by rhodium(I) bound to carbonic anhydrase (CA‐[Rh]). We minimized nonspecific binding of rhodium by replacing histidine residues on the protein surface using site‐directed mutagenesis or by chemically modifying the histidine residues. Hydrogenation catalyzed by CA‐[Rh] is slightly slower than for uncomplexed rhodium(I), but the protein environment induces stereoselectivity favoring cis‐ over trans‐stilbene by about 20:1. This enzyme is the first cofactor‐independent reductase that reduces organic molecules using hydrogen. This catalyst is a good starting point to create variants with tailored reactivity and selectivity. This strategy to insert transition metals in the active site of metalloenzymes opens opportunities to a wider range of enzyme‐catalyzed reactions.  相似文献   

12.
Obtaining unambiguous resonance assignments remains a major bottleneck in solid‐state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three‐dimensional (3D) spectra are used. Here, we present a proton‐detected 4D solid‐state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non‐uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH, (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail‐tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.  相似文献   

13.
The allosteric modulation of G‐protein‐coupled receptors (GPCRs) by sodium ions has received significant attention as crystal structures of several receptors show Na+ ions bound to the inactive conformations at the conserved Asp2.50. To date, structures from 24 families of GPCRs have been determined, though mechanistic insights into Na+ binding to the allosteric site are limited. We performed hundreds‐of‐microsecond long simulations of 18 GPCRs and elucidated their Na+ binding mechanism. In class A GPCRs, the Na+ ion binds to the conserved residue 2.50 whereas in class B receptors, it binds at 3.43b, 6.53b, and 7.49b. Using Markov state models, we obtained the free energy profiles and kinetics of Na+ binding to the allosteric site, which reveal a conserved mechanism of Na+ binding for GPCRs and show the residues that act as major barriers for ion diffusion. Furthermore, we also show that the Na+ ion can bind to GPCRs from the intracellular side when the allosteric site is inaccessible from the extracellular side.  相似文献   

14.
The site‐specific cleavage of peptide bonds is an important chemical modification of biologically relevant macromolecules. The reaction is not only used for routine structural determination of peptides, but is also a potential artificial modulator of protein function. Realizing the substrate scope beyond the conventional chemical or enzymatic cleavage of peptide bonds is, however, a formidable challenge. Here we report a serine‐selective peptide‐cleavage protocol that proceeds at room temperature and near neutral pH value, through mild aerobic oxidation promoted by a water‐soluble copper–organoradical conjugate. The method is applicable to the site‐selective cleavage of polypeptides that possess various functional groups. Peptides comprising D ‐amino acids or sensitive disulfide pairs are competent substrates. The system is extendable to the site‐selective cleavage of a native protein, ubiquitin, which comprises more than 70 amino acid residues.  相似文献   

15.
A series of glycoconjugates with defined connectivity were synthesized to investigate the impact of coupling Salmonella typhimurium O‐antigen to different amino acids of CRM197 protein carrier. In particular, two novel methods for site‐selective glycan conjugation were developed to obtain conjugates with single attachment site on the protein, based on chemical modification of a disulfide bond and pH‐controlled transglutaminase‐catalyzed modification of lysine, respectively. Importantly, conjugation at the C186‐201 bond resulted in significantly higher anti O‐antigen bactericidal antibody titers than coupling to K37/39, and in comparable titers to conjugates bearing a larger number of saccharides. This study demonstrates that the conjugation site plays a role in determining the immunogenicity in mice and one single attachment point may be sufficient to induce high levels of bactericidal antibodies.  相似文献   

16.
Protein toxins produced by bacteria are the cause of many life‐threatening diarrheal diseases. Many of these toxins, including cholera toxin (CT), enter the cell by first binding to glycolipids in the cell membrane. Inhibiting these multivalent protein/carbohydrate interactions would prevent the toxin from entering cells and causing diarrhea. Here we demonstrate that the site‐specific modification of a protein scaffold, which is perfectly matched in both size and valency to the target toxin, provides a convenient route to an effective multivalent inhibitor. The resulting pentavalent neoglycoprotein displays an inhibition potency (IC50) of 104 pM for the CT B‐subunit (CTB), which is the most potent pentavalent inhibitor for this target reported thus far. Complexation of the inhibitor and CTB resulted in a protein heterodimer. This inhibition strategy can potentially be applied to many multivalent receptors and also opens up new possibilities for protein assembly strategies.  相似文献   

17.
Polyetheretherketone tube is a better substrate for in‐tube solid‐phase microextraction than fused‐silica capillary and metal tube because of its resistance to high pressure and good flexibility. It was modified with a nanostructured silver coating, and characterized by scanning electron microscopy and energy dispersive X‐ray spectroscopy. It was connected into high‐performance liquid chromatography equipment to build the online analysis system by replacing the sample loop of a six‐port injection valve. To get the highest extraction capacity, the preparation conditions of the coating was investigated. Important extraction conditions including length of tube, sample volume, and desorption time were optimized using eight polycyclic aromatic hydrocarbons as model analytes. The tube exhibits excellent extraction efficiency toward them, with enrichment factors from 52 to 363. The online analysis method provides good linearity (0.5–100 or 1.0–100 μg/L) and low detection limits (0.15–0.30 μg/L). It has been used to determine polycyclic aromatic hydrocarbons in water samples, with relative recoveries in the range of 92.3–120%. The tube showed highest extraction ability for polycyclic aromatic hydrocarbons, higher extraction ability for hydrophobic phthalates and anilines, and almost no extraction ability for low hydrophobic phenols, due to the possible extraction mechanism including hydrophobic and electron‐rich element‐metal interactions.  相似文献   

18.
This study reported a pH‐mediated stacking CE coupled with ESI MS/MS method to determine the phosphorylation sites of three synthetic phosphopeptides containing structural isomers. These phosphopeptides mimic the phosphopeptides (amino acid residues 12–25) derived from the trypsin‐digested products of human lamin A/C protein. The LODs were determined to be 118, 132 and 1240 fmol for SGAQASS19TpPL22SPTR, SGAQASS19TPL22SpPTR, and SGAQASS19TpPL22SpPTR, respectively. The established method was employed to analyze the phosphorylation sites of the trypsin‐digested products of glutathione S‐transferase‐lamin A/C (1–57) fusion protein that had been phosphorylated in vitro by cyclin‐dependent kinase 1. The results indicated that this method is feasible to specifically determine the phosphorylation site from phosphopeptide isomers in the trypsin‐digested products of a kinase‐catalyzed phosphoprotein, which should benefit the investigation of protein kinase‐mediated cellular signal transduction.  相似文献   

19.
Allosteric information transfer in proteins has been linked to distinct vibrational energy transfer (VET) pathways in a number of theoretical studies. Experimental evidence for such pathways, however, is sparse because site‐selective injection of vibrational energy into a protein, that is, localized heating, is required for their investigation. Here, we solved this problem by the site‐specific incorporation of the non‐canonical amino acid β‐(1‐azulenyl)‐l ‐alanine (AzAla) through genetic code expansion. As an exception to Kasha's rule, AzAla undergoes ultrafast internal conversion and heating after S1 excitation while upon S2 excitation, it serves as a fluorescent label. We equipped PDZ3, a protein interaction domain of postsynaptic density protein 95, with this ultrafast heater at two distinct positions. We indeed observed VET from the incorporation sites in the protein to a bound peptide ligand on the picosecond timescale by ultrafast IR spectroscopy. This approach based on genetically encoded AzAla paves the way for detailed studies of VET and its role in a wide range of proteins.  相似文献   

20.
We report a site‐selective cysteine–cyclooctyne conjugation reaction between a seven‐residue peptide tag (DBCO‐tag, Leu‐Cys‐Tyr‐Pro‐Trp‐Val‐Tyr) at the N or C terminus of a peptide or protein and various aza‐dibenzocyclooctyne (DBCO) reagents. Compared to a cysteine peptide control, the DBCO‐tag increases the rate of the thiol–yne reaction 220‐fold, thereby enabling selective conjugation of DBCO‐tag to DBCO‐linked fluorescent probes, affinity tags, and cytotoxic drug molecules. Fusion of DBCO‐tag with the protein of interest enables regioselective cysteine modification on proteins that contain multiple endogenous cysteines; these examples include green fluorescent protein and the antibody trastuzumab. This study demonstrates that short peptide tags can aid in accelerating bond‐forming reactions that are often slow to non‐existent in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号