首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
We report the visible‐light photocatalytic properties of a composite system consisting of silver quantum clusters [Ag9(H2MSA)7] (H2MSA=mercaptosuccinic acid) embedded on graphitic carbon nitride nanosheets (AgQCs‐GCN). The composites were prepared through a simple chemical route; their structural, chemical, morphological, and optical properties were characterized by using X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy, transmission electron microscopy, UV/Vis diffuse reflectance spectroscopy, and photoluminescence spectroscopy. Embedment of [Ag9(H2MSA)7] on graphitic carbon nitride nanosheets (GCN) resulted in extended visible‐light absorption through multiple single‐electron transitions in Ag quantum clusters and an effective electronic structure for hydroxyl radical generation, which enabled increased activity in the photocatalytic degradation of methylene blue and methyl orange dye molecules compared with pristine GCN and silver nanoparticle‐grafted GCN (AgNPs‐GCN). Similarly, the amount of hydrogen generated by using AgQCs‐GCN was 1.7 times higher than pristine GCN. However, the rate of hydrogen generated using AgQCs‐GCN was slightly less than that of AgNPs‐GCN because of surface hydroxyl radical formation. The plausible photocatalytic processes are discussed in detail.  相似文献   

2.
An hydrogenated nitrogen-rich graphitic carbon nitride, structurally related to the theoretical graphitic phase of C3N4, has been synthesized in a bulk well-crystallized form. This new material was prepared by thermal decomposition of thiosemicarbazide up to 600 °C at ambient pressure under nitrogen flow. Its composition was determined by elemental combustion analysis. Powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and C13 MAS NMR characterizations were performed. This material can be schematically described with a two-dimensional framework and a composition close to C3N4.17H1.12. In this nitrogen-rich material, C3N3 voids are fully occupied by water molecules which are strongly trapped into the material. A loss of crystallinity associated with a modification of the thermal behavior is observed when the amount of trapped molecules decreases in the graphitic material, order being damaged both between and in the graphitic planes.  相似文献   

3.
以三聚氰胺和硫脲为前驱体,通过简易的氧气刻蚀制备了多孔纳米片状氮化碳。相比于三聚氰胺制备的薄片状氮化碳(MCNS),以硫脲制备的多孔纳米片状的g-C3N4(TCNS)片层更薄,其单片厚度约为30 nm,且TCNS的层状结构明显,能带隙约为3.03 eV,高于石墨相氮化碳(2.77 eV),更宽的禁带赋予载流子更强的氧化还原能力。较大的比表面积(114 m2·g-1)可以提供更多的活性位点,同时纳米片状结构可以促进电子与空穴的有效分离和转移,且能有效地降低光生载流子的复合率,因而TCNS具有更高的光催化活性。  相似文献   

4.
以三聚氰胺和硫脲为前驱体,通过简易的氧气刻蚀制备了多孔纳米片状氮化碳。相比于三聚氰胺制备的薄片状氮化碳(MCNS),以硫脲制备的多孔纳米片状的g-C_3N_4(TCNS)片层更薄,其单片厚度约为30 nm,且TCNS的层状结构明显,能带隙约为3.03 eV,高于石墨相氮化碳(2.77 eV),更宽的禁带赋予载流子更强的氧化还原能力。较大的比表面积(114 m~2·g~(-1))可以提供更多的活性位点,同时纳米片状结构可以促进电子与空穴的有效分离和转移,且能有效地降低光生载流子的复合率,因而TCNS具有更高的光催化活性。  相似文献   

5.
《中国化学快报》2022,33(10):4715-4718
The efficiency of photocatalytic pollutant removal largely depends on the ability of the photocatalytic system to produce hydroxyl radicals (?OH). However, the capability of photocatalyst to produce ?OH is not strong at present. Advancing the capacity of photocatalytic system to produce ?OH has always been a tough problem and challenge in the field of environmental science. In this research, it was found that introducing nitric oxide (NO) into the graphitic carbon nitride (g-C3N4) photocatalytic system could memorably enhance the ability of producing ?OH group. This study provides a new idea for improving the capacity of photocatalytic ?OH production.  相似文献   

6.
Advances in noble metal mediated Z-scheme photocatalytic system have ushered in a climax on environmental remediation. Herein, graphitic carbon nitride (GCN) and phosphorus sulphur co-doped graphitic carbon nitride (PSCN) were synthesized via calcination process. GCN, PSCN and Z-scheme visible light driven (VLD) ternary BiOBr/PSCN/Ag/AgCl nanophotocatalyst were characterized by X-ray diffraction pattern (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–visible diffuse reflectance spectra (UV–vis DRS). BiOBr/PSCN/Ag/AgCl nanocomposite exhibited superior visible light driven photocatalytic ability as compared to pristine PSCN, AgCl and BiOBr towards degradation of phenol. The results explicated promising photocatalytic activity along with space separation of photocarriers caused via formation of BiOBr/PSCN/Ag/AgCl Z-scheme heterojunction. The visible light absorption efficacy of BiOBr/PSCN/Ag/AgCl photocatalyst was confirmed by photoluminescence (PL) spectra. Finally, recycling experiments were explored for the mechanistic detailing of phenol photodegradation employing BiOBr/PSCN/Ag/AgCl photocatalyst. After seven successive cycles photodegradation efficacy of photocatalyst was reduced to 90% from 98%. Proposed mechanism of BiOBr/PSCN/Ag/AgCl nanophotocatalyst for degradation of phenol was discussed. OH and O2 radicals were main reactive species responsible for photocatalytic phenol degradation.  相似文献   

7.
以双氰胺和氢氧化钾为原料制备了能带可控的钾离子掺杂石墨型氮化碳(g-C3N4)光催化剂,并与碱处理的g-C3N4及g-C3N4/KOH复合催化剂进行了对比。采用X射线衍射(XRD)光谱、紫外-可见(UV-Vis)光谱、傅里叶变换红外(FTIR)光谱、N2吸附、电感耦合等离子体-原子发射光谱(ICP-AES)、荧光(PL)光谱、X 光电子能谱(XPS)等分析手段对制备的催化剂进行了表征。结果表明,钾离子含量对氮化碳催化剂的价带及导带位置有显著影响。此外,钾离子的引入抑制了氮化碳晶粒的生长,提高了氮化碳的比表面积以及对可见光的吸收,降低了光生电子-空穴对的复合几率。以染料罗丹明B的降解为探针反应系统研究了钾离子掺杂对g-C3N4在可见光下催化性能的影响,研究了光催化反应机理。结果表明,钾离子掺杂后氮化碳的光催化性能显著提高。制备的钾离子掺杂氮化碳催化剂表现出良好的结构及催化稳定性。  相似文献   

8.
Numerous approaches have been used to modify graphitic carbon nitride(g-C3N4) for improving its photocatalytic activity. In this study, we demonstrated a facial post-calcination method for modified graphitic carbon nitride(g-C3N4-Ar/Air) to direct tuning band structure, i.e., bandgap and positions of conduction band(CB)/valence band(VB), through the control of atmospheric condition without involving any additional elements or metals or semiconductors. ...  相似文献   

9.
Photocatalysis is a defendable manner for production of several organic chemicals, energy and its storage from solar energy. For the evolution of metal free, cost-effective catalyst a 2D composite has been appear as a photocatalyst. Here, we had reported the synthesis of a light harvesting composite as a photocatalyst which was assembled by a poly-condensation mechanism between graphitic carbon nitride and tetrakis(4-nitrophenyl) porphyrin and the resulting composite manifest the excellent light harvesting properties, suitable energy band and low charge recombination. The photocatalyst [(NO2)4TPP@g-C3N4] enables the efficient photocatalytic production of nicotinamide adenine dinucleotide (NADH) from consumed NAD+ also the production of organic chemicals like 4-methoxybenzylimines from 4-methoxybenzylamines. The photocatalytic efficiency of the photocatalyst was estimated by the percentage of NADH regeneration and the percentage yield of organic transformations. It shows the tetrakis(4-nitrophenyl) porphyrin could enhance the charge transfer capacity of graphitic carbon nitride which shows excellent photocatalysis activities and organic transformations.  相似文献   

10.
Enrichment of UVI is an urgent project for nuclear energy development. Herein, magnetic graphitic carbon nitride nanosheets were successfully prepared by in situ anchoring of pyrrhotite (Fe7S8) on the graphitic carbon nitride nanosheet (CNNS), which were used for capturing UVI. The structural characterizations of Fe7S8/CNNS-1 indicated that the CNNS could prevent the aggregation of Fe7S8 and the saturation magnetization was 4.69 emu g−1, which meant that it was easy to separate the adsorbent from the solution. Adsorption experiments were performed to investigate the sorption properties. The results disclosed that the sorption data conformed to the Langmuir isotherm model with the maximum adsorption capacity of 572.78 mg g−1 at 298 K. The results of X-ray photoelectron spectroscopy (XPS) demonstrated that the main adsorption mechanism are as follows: UVI is adsorbed on the surface of Fe7S8/CNNS-1 through surface complexation initially, then it was reduced to insoluble UIV. Thereby, this work provided an efficient and easy to handle sorbent material for extraction of UVI.  相似文献   

11.
A novel biochar-based graphitic carbon nitride was prepared through calcination of Zinnia grandiflora petals and urea. To provide acidic and ionic-liquid functionalities on the prepared carbon, the resultant biochar-based graphitic carbon nitride was vinyl functionalized and polymerized with 2-acrylamido-2-methyl-1-propanesulfonic acid, acrylic acid and the as-prepared 1-vinyl-3-butylimidazolium chloride. The final catalytic system that benefits from both acidic (–COOH and –SO3H) and ionic-liquid functionalities was applied as a versatile, metal-free catalyst for promoting some model acid catalyzed reactions such as Knoevenagel condensation and Biginelli reaction in aqueous media under a very mild reaction condition. The results confirmed high activity of the catalyst. Broad substrate scope and recyclability and stability of the catalyst were other merits of the developed protocols. Comparative experiments also indicated that both acidic and ionic-liquid functionalities on the catalyst participated in the catalysis.  相似文献   

12.
Using heterogeneous basic catalysts has a great importance in chemical reactions because of their advantages (such as easy separation and thermal stability at harsh conditions) over homogeneous catalysts. In this study, magnetic mesoporous silica nanoparticles (mSiO2) containing graphitic carbon nitride layers (mSiO2/g-C3N4(x)) were fabricated through a facile process (x signifies the amount of melamine applied during synthesis). Graphitic carbon nitride layers were decorated on mSiO2 by calcination of immobilized melamine (as graphitic carbon nitride precursor) on mSiO2 in the last step of catalyst synthesis. The structure of the prepared catalysts was confirmed using XRD, BET, FESEM, EDX, elemental mapping and TEM methods. The catalytic efficiency of the so-obtained solid base composite was investigated for the synthesis of some dihydropyranochromenes and spiro-dihydropyranochromenes under thermal and microwave conditions. Using mSiO2/g-C3N4(x) led to high yields under green conditions and in short reaction times and without a decrease in catalytic activity after four consecutive cycles.  相似文献   

13.
《中国化学快报》2023,34(6):107893
Rational regulation of stable graphitic carbon nitride (CN) for superior peroxymonosulfate (PMS) activation is important in the catalytic degradation of water contaminants. In this work, the copper oxide and oxygen co-doped graphitic carbon nitride (CuO/O-CN) was prepared via one-step synthesis and applied in activating PMS for oxytetracycline (OTC) degradation, displaying superior catalytic performance. Systematic characterization and theoretical calculations indicated that the synergistic effect between the oxygen site of CN and CuO can modulate the electronic structure of the whole composite further facilitating the formation of non-radical 1O2 and various reactive radicals. Results of the influencing factor experiments revealed that CuO/O-CN has a strong resistance to the environmental impact. The degradation efficiency of OTC in the real water environment even exceeded that in the deionized water. After four successive runs of the optimal catalyst, the OTC removal rate was still as high as 91.3%. This work developed a high-efficiency PMS activator to remove refractory pollutants via both radical pathway and non-radical pathway, which showed a promising potential in the treatment of wastewaters.  相似文献   

14.
Photocatalytic Diels–Alder (D–A) reactions with electron rich olefins are realized by graphitic carbon nitride (g‐C3N4) under visible‐light irradiation and aerobic conditions. This heterogeneous photoredox reaction system is highly efficient, and the apparent quantum yield reaches a remarkable value of 47 % for the model reaction. Dioxygen plays a critical role as electron mediator, which is distinct from the previous reports in the homogeneous RuII complex photoredox system. Moreover, the reaction intermediate vinylcyclobutane is captured and monitored during the reaction, serving as a direct evidence for the proposed reaction mechanism. The cycloaddition process is thereby determined to be the combination of direct [4+2] cycloaddition and [2+2] cycloaddition followed by photocatalytic rearrangement of the vinylcyclobutane intermediate.  相似文献   

15.
A novel CaCO3/graphitic carbon nitride (g-C3N4) photocatalyst was synthesized for the first time via a facile calcination method using CaCO3 and melamine as precursors. The as-prepared samples were characterized using various techniques, such as scanning and transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller analysis, as well as Fourier-transform infrared, X-ray photoelectron, photoluminescence, and UV–vis diffuse reflectance spectroscopy. The results of the experiments confirm the successful coupling of CaCO3 to g-C3N4. The photocatalytic activity of the synthesized CaCO3/g-C3N4 composites was evaluated by assessing their performance in the photocatalytic degradation of crystal violet (CV) in water under visible light irradiation. The analysis shows that CaCO3/g-C3N4 exhibits higher photocatalytic activity towards CV degradation (76.0%) than pristine g-C3N4 (21.6%) and CaCO3 (23.2%). Radical trapping and electron spin resonance experiments show that hydroxyl radicals (OH) and holes (h+) are the key reactive species in the photocatalytic process. The enhanced photocatalytic activity of the composite is mainly attributed to the efficient separation rate of electron-hole pairs achieved through the incorporation of CaCO3.  相似文献   

16.
We report on the facile synthesis of g-C3N4 based polymers by co-condensing urea with glycine for photocatalytic hydrogen evolution. The as-prepared photocatalysts were then characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, UV–Vis diffuse reflectance spectroscopy, photoluminescence emission spectrometry, electron paramagnetic resonance spectrometry and transmission electron microscopy. Compared with pristine g-C3N4, obtained from direct pyrolysis of urea, the CNU-G5 photocatalyst showed largely enhanced photocatalytic H2 activities about 75 μmol h?1, which is 5 times higher than of the pristine CNU. The enhanced activities are ascribed to the larger specific area surface, strengthened optical absorption and improved electron transport ability. Our work opens up a new pathway for the synthesis graphitic carbon nitride photocatalysts with glycine modification to enhance photocatalytic activities.  相似文献   

17.
A novel hybrid photocatalyst composed of hollow carbon nanospheres (NCS) and graphitic carbon nitride (CN) curly nanosheets has been prepared by the calcination of a NCS precursor and freeze-dried urea. The optimized photocatalyst exhibits an efficient photocatalytic performance under visible light irradiation with a highest H2 generation rate of 3612.3 μmol g−1 h−1, leading to an apparent quantum yield of 10.04 % at 420 nm, five times higher than the widely reported benchmark photocatalyst CN (2.01 % AQY). The materials characterization shows that NCS-modified CN curly nanosheets can promote photoelectron transfer and suppress charge recombination through their special coupling interface and NCS as an electron acceptor, which significantly improves the photocatalytic efficiency. Thus, this study provides an efficient strategy for the design of highly efficient photocatalyst, particularly suitable for a totally metal-free photocatalytic system.  相似文献   

18.
Polymeric carbon nitride materials have been used in numerous light‐to‐energy conversion applications ranging from photocatalysis to optoelectronics. For a new application and modelling, we first refined the crystal structure of potassium poly(heptazine imide) (K‐PHI)—a benchmark carbon nitride material in photocatalysis—by means of X‐ray powder diffraction and transmission electron microscopy. Using the crystal structure of K‐PHI, periodic DFT calculations were performed to calculate the density‐of‐states (DOS) and localize intra band states (IBS). IBS were found to be responsible for the enhanced K‐PHI absorption in the near IR region, to serve as electron traps, and to be useful in energy transfer reactions. Once excited with visible light, carbon nitrides, in addition to the direct recombination, can also undergo singlet–triplet intersystem crossing. We utilized the K‐PHI centered triplet excited states to trigger a cascade of energy transfer reactions and, in turn, to sensitize, for example, singlet oxygen (1O2) as a starting point to synthesis up to 25 different N‐rich heterocycles.  相似文献   

19.
Highly crystalline graphitic carbon nitride (g‐C3N4) with decreased structural imperfections benefits from the suppression of electron–hole recombination, which enhances its hydrogen generation activity. However, producing such g‐C3N4 materials by conventional heating in an electric furnace has proven challenging. Herein, we report on the synthesis of high‐quality g‐C3N4 with reduced structural defects by judiciously combining the implementation of melamine–cyanuric acid (MCA) supramolecular aggregates and microwave‐assisted thermolysis. The g‐C3N4 material produced after optimizing the microwave reaction time can effectively generate H2 under visible‐light irradiation. The highest H2 evolution rate achieved was 40.5 μmol h−1, which is two times higher than that of a g‐C3N4 sample prepared by thermal polycondensation of the same supramolecular aggregates in an electric furnace. The microwave‐assisted thermolysis strategy is simple, rapid, and robust, thereby providing a promising route for the synthesis of high‐efficiency g‐C3N4 photocatalysts.  相似文献   

20.
The electron transport properties of a novel pn junction nanowire caused by boron‐doping and phosphorus‐doping are investigated using density functional theory combined with the nonequilibrium Green's functions formalism. A satisfying rectification is observed. This is a reasonable result after the analysis of the molecular‐projected self‐consistent Hamitonian (MPSH) states, transmission spectra, the frontier orbitals, and the dipole moments. In contrast, the undoped chain has no rectification character. In addition, a negative differential resistance behavior is also observed at V = 1.8 ~ 2.2 V in the doped nanowire and it could be illustrated from the MPSH states and the transmission spectra. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号