首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The title compound AuS2CNH2 was prepared from an aqueous solution by reaction of dicyanidoaurate [Au(CN)2] with excess of ammoniumdithiocarbamate NH4S2CN H 2 at pH ≈ 2. The compound crystallizes in the orthorhombic space group Cmma with a = 6.4597(2), b = 12.6556(3), and c = 5.3235(1) Å. The crystal structure comprises linear S–Au–S dumbbells forming unbranched zigzag chains in combination with the dithiocarbamate ligands. The three‐dimensional arrangement of the molecules is realized by aurophilic AuI–AuI and hydrogen bonding interactions, respectively. AuS2CNH2 presents orange luminescence due to a broad emission band between 12000 cm–1 and 23000 cm–1 (ν = 26316 cm–1).  相似文献   

2.
Ultrasmall gold nanoclusters consisting of 2-4 Au atoms were synthesized and their performance in electrocatalytic oxygen reduction reactions (ORR) was examined. These clusters were synthesized by exposing AuPPh3Cl to the aqueous ammonia medium for one week. Electrospray ionization mass spectrometry (ESI-MS), X-ray absorption fine structure (XAFS), and X-ray photoelectron spectroscopy (XPS) analyses indicate that the as-synthesized gold clusters (abbreviated as Aux) consist of 2-4 Au atoms coordinated by the triphenylphosphine, hydroxyl, and adsorbed oxygen ligands. A glassy carbon disk electrode loaded with the Aux clusters (Aux/GC) was characterized by the cyclic and linear-sweep voltammetry for ORR. The cyclic voltammogram vs. RHE shows the onset potential of 0.87 V, and the kinetic parameters of JK at 0.47 V and the electron-transfer number per oxygen molecule were calculated to be 14.28 mA/cm2 and 3.96 via the Koutecky-Levich equations, respectively.  相似文献   

3.
《化学:亚洲杂志》2018,13(15):1906-1910
A unique example of a ring‐to‐cage structural conversion in a multinuclear gold(I) coordination system with d ‐penicillamine (d ‐H2pen) is reported. The reaction of [Au2Cl2(dppe)] (dppe=1,2‐bis(diphenylphosphino)ethane) with d ‐H2pen in a 1:1 ratio gave [Au4(dppe)2(d ‐pen)2] ([ 1 ]), in which two [Au2(dppe)]2+ units are linked by two d ‐pen S atoms in a cyclic form so as to have two bidentate‐N,O coordination arms. The subsequent reaction of [ 1 ] with Cu(OTf)2 afforded [Au4Cu(dppe)2(d ‐pen)2]2+ ([ 2 ]2+), in which a CuII ion is chelated by the two coordination arms in [ 1 ] to form an AuI4CuII bicyclic metallocage. A similar reaction using Cu(NO3)2 was accompanied by the ring expansion of [ 1 ] to [Au8(dppe)4(d ‐pen)4], leading to the production of [Au8Cu2(dppe)4(d ‐pen)4]4+ ([ 3 ]4+). In [ 3 ]4+, two CuII ions are each chelated by the two coordination arms to form an AuI8CuII2 tricyclic metallocage, accommodating a nitrate ion. The use of Ni(NO3)2 or Ni(OAc)2 instead of Cu(NO3)2 commonly gave a tricyclic metallocage of [Au8Ni2(dppe)4(d ‐pen)4]4+ ([ 4 ]4+), but a water molecule was accommodated inside the AuI8NiII2 metallocage.  相似文献   

4.
The reaction of new dinuclear gold(I) organometallic complexes containing mesityl ligands and bridging bidentate phosphanes [Au2(mes)2(μ‐LL)] (LL=dppe: 1,2‐bis(diphenylphosphano)ethane 1 a , and water‐soluble dppy: 1,2‐bis(di‐3‐pyridylphosphano)ethane 1 b ) with Ag+ and Cu+ lead to the formation of a family of heterometallic clusters with mesityl bridging ligands of the general formula [Au2M(μ‐mes)2(μ‐LL)][A] (M=Ag, A=ClO4?, LL=dppe 2 a , dppy 2 b ; M=Ag, A=SO3CF3?, LL=dppe 3 a , dppy 3 b ; M=Cu, A=PF6?, LL=dppe 4 a , dppy 4 b ). The new compounds were characterized by different spectroscopic techniques and mass spectrometry The crystal structures of [Au2(mes)2(μ‐dppy)] ( 1 b ) and [Au2Ag(μ‐mes)2(μ‐dppe)][SO3CF3] ( 3 a ) were determined by a single‐crystal X‐ray diffraction study. 3 a in solid state is not a cyclic trinuclear Au2Ag derivative but it gives an open polymeric structure instead, with the {Au2(μ‐dppe)} fragments “linked” by {Ag(μ‐mes)2} units. The very short distances of 2.7559(6) Å (Au? Ag) and 2.9229(8) Å (Au? Au) are indicative of gold–silver (metallophilic) and aurophilic interactions. A systematic study of their luminescence properties revealed that all compounds are brightly luminescent in solid state, at room temperature (RT) and at 77 K, or in frozen DMSO solutions with lifetimes in the microsecond range and probably due to the self‐aggregation of [Au2M(μ‐mes)2(μ‐LL)]+ units (M=Ag or Cu; LL=dppe or dppy) into an extended chain structure, through Au? Au and/or Au? M metallophilic interactions, as that observed for 3 a . In solid state the heterometallic Au2M complexes with dppe ( 2 a – 4 a ) show a shift of emission maxima (from ca. 430 to the range of 520‐540 nm) as compared to the parent dinuclear organometallic product 1 a while the complexes with dppy ( 2 b–4 b ) display a more moderate shift (505 for 1 b to a max of 563 nm for 4 b ). More importantly, compound [Au2Ag(μ‐mes)2(μ‐dppy)]ClO4 ( 2 b ) resulted luminescent in diluted DMSO solution at room temperature. Previously reported compound [Au2Cl2(μ‐LL)] (LL dppy 5 b ) was also studied for comparative purposes. The antimicrobial activity of 1–5 and Ag[A] (A=ClO4?, SO3CF3?) against Gram‐positive and Gram‐negative bacteria and yeast was evaluated. Most tested compounds displayed moderate to high antibacterial activity while heteronuclear Au2M derivatives with dppe ( 2 a – 4 a ) were the more active (minimum inhibitory concentration 10 to 1 μg mL?1). Compounds containing silver were ten times more active to Gram‐negative bacteria than the parent dinuclear compound 1 a or silver salts. Au2Ag compounds with dppy ( 2 b , 3 b ) were also potent against fungi.  相似文献   

5.
The structure of nanoparticles plays a critical role in dictating their material properties. Gold is well known to adopt face‐centered cubic (fcc) structure. Herein we report the first observation of a body‐centered cubic (bcc) gold nanocluster composed of 38 gold atoms protected by 20 adamantanethiolate ligands and two sulfido atoms ([Au38S2(SR)20], where R=C10H15) as revealed by single‐crystal X‐ray crystallography. This bcc structure is in striking contrast with the fcc structure of bulk gold and conventional Au nanoparticles, as well as the bi‐icosahedral structure of [Au38(SCH2CH2Ph)24]. The bcc nanocluster has a distinct HOMO–LUMO gap of ca. 1.5 eV, much larger than the gap (0.9 eV) of the bi‐icosahedral [Au38(SCH2CH2Ph)24]. The unique structure of the bcc gold nanocluster may be promising in catalytic applications.  相似文献   

6.
Kernel atoms of Au nanoclusters are packed layer‐by‐layer along the [001] direction with every full (001) monolayer composed of 8 Au atoms (Au8 unit) in nanoclusters with formula of Au8n+4(TBBT)4n+8 (n is the number of Au8 units; TBBTH=4‐tert‐butylbenzenelthiol). It is unclear whether the kernel atoms can be stacked in a defective‐layer way along the [001] direction during growth of the series of nanoclusters and how the kernel layer number affects properties. Now, a nanocluster is synthesized that is precisely characterized by mass spectrometry and single‐crystal X‐ray crystallography, revealing a layer stacking mode in which a half monolayer composed of 4 atoms (Au4 unit) is stacked on the full monolayer along the [001] direction. The size and the odevity of the kernel layer number influence the properties (polarity, photoluminescence) of gold nanoclusters. The obtained nanocluster extends the previous formula from Au8n+4(TBBT)4n+8 to Au4n+4(TBBT)2n+8 (n is the number of Au4 units).  相似文献   

7.
The polyphosphide Au2PbP2 was prepared by reaction of the elemental components using liquid lead as a reaction medium. Well-developed crystals were obtained after dissolving the matrix in hydrochloric acid. Their crystal structure was determined from four-circle X-ray diffractometer data: Cmcm, a=323.6(1) pm, b=1137.1(2) pm, c=1121.8(1) pm, Z=4, R=0.023 for 478 structure factors and 20 variable parameters. The structure contains zigzag chains of phosphorus atoms with a typical single-bond distance of 219.4(2) pm. The two different kinds of gold atoms are both in linear phosphorus coordination with typical single-bond distances of 232.6(2) and 234.2(2) pm, and the lead atoms have only metal neighbors (7 Au and 2 Pb). Accordingly, chemical bonding of the compound may be expressed by the formula (Au+1)2Pb±0(P−1)2. The corresponding thallium and mercury polyphosphides Au2TlP2 (a=324.1(1) pm, b=1136.1(1) pm, c=1122.1(1) pm) and Au2HgP2 (a=322.1(1) pm, b=1131.4(2) pm, c=1122.6(1) pm) were found to be almost isotypic with Au2PbP2. Their crystal structures were refined from single-crystal X-ray data to R=0.036 (682 F values, 25 variables) and R=0.026 (539 F values, 35 variables), respectively. The structure of these compounds may also be described as consisting of a three-dimensional network of condensed 8- and 10-membered Au2P6 and Au4P6 rings forming parallel channels, which are filled by the lead, thallium, and mercury atoms. The lead atoms are well localized in these channels, while the thallium and even more the mercury atoms occupy additional positions within these channels. Freshly prepared samples of Au2HgP2 show reproducibly slightly different axial ratios and larger cell volumes (ΔV=0.5%) than those after exposure of the samples to air for several days.  相似文献   

8.
Kernel atoms of Au nanoclusters are packed layer-by-layer along the [001] direction with every full (001) monolayer composed of 8 Au atoms (Au8 unit) in nanoclusters with formula of Au8n+4(TBBT)4n+8 (n is the number of Au8 units; TBBTH=4-tert-butylbenzenelthiol). It is unclear whether the kernel atoms can be stacked in a defective-layer way along the [001] direction during growth of the series of nanoclusters and how the kernel layer number affects properties. Now, a nanocluster is synthesized that is precisely characterized by mass spectrometry and single-crystal X-ray crystallography, revealing a layer stacking mode in which a half monolayer composed of 4 atoms (Au4 unit) is stacked on the full monolayer along the [001] direction. The size and the odevity of the kernel layer number influence the properties (polarity, photoluminescence) of gold nanoclusters. The obtained nanocluster extends the previous formula from Au8n+4(TBBT)4n+8 to Au4n+4(TBBT)2n+8 (n is the number of Au4 units).  相似文献   

9.
The reduction of (Ph3P)AuCl with NaBH4 in the presence of HSC(SiMe3)3, leads to one of the largest metalloid gold clusters: Au108S24(PPh3)16 ( 1 ). Within 1 an octahedral Au44 core of gold atoms arranged as in Au metal is surrounded by 48 oxidized Au atoms of an Au48S24 shell, a novel building block in gold chemistry. The protecting Au48S24 shell is completed by additional 16 Au(PPh3) units, leading to a complete protection of the gold core. Within 1 the Au–Au distances get more molecular on going from the center to the ligand shell. Cluster 1 represents novel structural motives in the field of metalloid gold clusters which also are partly typical for metal atoms in metalloid clusters: Mn Rm (n >m ).  相似文献   

10.
2,3‐bis(diphenylphosphino)butane enantiomers (chiraphos, L) used as chiral auxiliaries results in the preferential formation of an unprecedented Au24 framework with inherent chirality. The crystal structure of [Au24L6Cl4]2+ ( 1 ) has a square antiprism‐like octagold core twinned by two helicene‐like hexagold motifs, where the inherent chirality is associated with the helical arrangement. The clusters carrying (R,R)‐ and (S,S)‐ diphosphines had right‐ and left‐handed strands, respectively. Circular dichroism spectra showed peaks in the visible to near‐IR region, some of which did not coincide with absorption bands, suggesting the enantiomeric Au24 frameworks possess unique chiroptical properties. The Au24 frameworks were thermally robust, which could be attributed to the superatomic concept (18 e? system) and the steric constraint effects of the bridging ligand units.  相似文献   

11.
The new Au8{Fe(CO)4}4(P^P)2 and Au6Cu2{Fe(CO)4}4(P^P)2 (P^P=dppm, dppe) neutral cluster compounds were isolated in good yields by condensation of the [Au3{Fe(CO)4}2(P^P)]- anions with Au(SEt2)Cl and CuCl, respectively, and have been characterized by IR, NMR and microanalyses. The molecular structures of Au8{Fe(CO)4}4(dppe)2 and Au6Cu2{Fe(CO)4}4(dppe)2 have been determined by X-ray diffraction studies. Both molecules adopt a stereogeometry of the heavy atoms consisting of a triangulated and corrugated ribbon twisted around the elongation direction. Contrary to the expectations the latter displays the two copper atoms in the sites of highest connectivity. This implies that site exchange between copper and gold occurs during the synthesis.  相似文献   

12.
 The reaction of elemental antimony with elemental sulfur and [Ph4P]Br in an aqueous solution of neopentanediamine under solvothermal conditions yields yellow needles of the new thioantimonate(III) [Ph4P]2[Sb6S10]. The structure consists of [Ph4P]+ cations and infinite one-dimensional anionic (Sb6S10 2−)n chains running along the crystallographic a axis. The chains are composed of 10-membered Sb5S5 rings with alternating Sb and S atoms and separated by the tetraphenylphosphonium cations. Upon heating the compound decomposes in two distinct steps, starting at about 100°C. The final product was identified by X-ray powder diffractometry as Sb2S3.  相似文献   

13.
Gold nanoparticles are known to be highly versatile oxidation catalysts utilizing molecular oxygen as a feedstock, but the mechanism and species responsible for activating oxygen remain unclear. The reaction between unsupported cationic gold clusters and molecular oxygen has been investigated. The resulting complexes were characterized in the gas phase using IR spectroscopy. A strong red‐shift in the observed ν(O‐O) stretching frequency indicates the formation of superoxo (O2?) moieties. These moieties are seen to form spontaneously in systems, which upon electron transfer attain a closed shell within the spherical jellium model (Au10+ and Au22+), whereas an oxygen induced self‐promotion in the activation is observed for other systems (Au4+, Au12+, Au21+).  相似文献   

14.
The zinc finger protein tristetraprolin (TTP) regulates inflammation by downregulating cytokine mRNAs. Misregulation results in arthritis, sepsis and cancer, and there is an interest in modulating TTP activity with exogenous agents. Gold has anti-inflammatory properties and has recently been shown to modulate the signaling pathway that produces TTP, suggesting that TTP may be a target of gold. The reactivity of [AuIII(terpy)Cl]Cl2 with TTP was investigated by UV/Vis spectroscopy, spin-filter inductively coupled plasma mass spectrometry, X-ray absorption spectroscopy and native electrospray ionization mass spectrometry. AuIII was found to replace zinc in the protein active site in the reduced AuI form, with the AuI ion coordinated to two cysteine residues in a linear geometry. The replacement of ZnII with AuI results in loss of both secondary structure and RNA binding function. In contrast, when ZnIITTP is bound to its RNA target, no replacement of ZnII with AuI is observed, even in the presence of excess AuIIIterpy. This discovery of differential reactivity of gold with TTP versus TTP/RNA offers a potential strategy for selective targeting with gold complexes to control inflammation.  相似文献   

15.
Ligand‐induced surface restructuring with heteroatomic doping is used to precisely modify the surface of a prototypical [Au25(SR1)18]? cluster ( 1 ) while maintaining its icosahedral Au13 core for the synthesis of a new bimetallic [Au19Cd3(SR2)18]? cluster ( 2 ). Single‐crystal X‐ray diffraction studies reveal that six bidentate Au2(SR1)3 motifs (L2) attached to the Au13 core of 1 were replaced by three quadridentate Au2Cd(SR2)6 motifs (L4) to create a bimetallic cluster 2 . Experimental and theoretical results demonstrate a stronger electronic interaction between the surface motifs (Au2Cd(SR2)6) and the Au13 core, attributed to a more compact cluster structure and a larger energy gap of 2 compared to that of 1 . These factors dramatically enhance the photoluminescence quantum efficiency and lifetime of crystal of the cluster 2 . This work provides a new route for the design of a wide range of bimetallic/alloy metal nanoclusters with superior optoelectronic properties and functionality.  相似文献   

16.
《中国化学》2018,36(7):639-643
Two types of CeO2 nanocubes (average size of 5 and 20 nm, respectively) prepared via the hydrothermal process were selected to load gold species via a deposition‐precipitation (DP) method. Various measurements, including X‐ray diffraction (XRD), Raman spectra, high resolution transmission electron microscopy (HRTEM), in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS), and temperature‐programmed reduction by hydrogen (H2‐TPR), were applied to characterize the catalysts. It is found that the sample with ceria size of 20 nm (Au/CeO2‐20) was covered by well dispersed both Au3+ and Auδ+ (0 < δ < 1). For the other sample with ceria size of 5 nm (Au/CeO2‐5), Au3+ is the dominant gold species. Au/CeO2‐20 performed better catalytic activity for CO oxidation because of the strong CO adsorption of Auδ+ in the catalysts. The catalytic activity of Au/CeO2‐5 was improved due to the transformation of Au3+ to Auδ+. Based on the CO oxidation and in situ DRIFTS results, Auδ+ is likely to play a more important role in catalyzing CO oxidation reaction.  相似文献   

17.
Chiral binuclear gold(I) phosphine complexes catalyze enantioselective intermolecular hydroarylation of allenes with indoles in high product yields (up to 90 %) and with moderate enantioselectivities (up to 63 % ee). Among the gold(I) complexes examined, better ee values were obtained with binuclear gold(I) complexes, which displayed intramolecular AuI AuI interactions. The binuclear gold(I) complex 4c [(AuCl)2( L3 )] with chiral biaryl phosphine ligand (S)‐(−)‐MeO‐biphep ( L3 ) is the most efficient catalyst and gives the best ee value of up to 63 %. Substituents on the allene reactants have a slight effect on the enantioselectivity of the reaction. Electron‐withdrawing groups on the indole substrates decrease the enantioselectivity of the reaction. The relative reaction rates of the hydroarylation of 4‐X‐substituted 1,3‐diarylallenes with N‐methylindole in the presence of catalyst 4c [(AuCl)2( L3 )] / AgOTf [ L3 =(S)‐(−)‐MeO‐biphep], determined through competition experiments, correlate (r2=0.996) with the substituent constants σ. The slope value is −2.30, revealing both the build‐up of positive charge at the allene and electrophilic nature of the reactive AuI species. Two plausible reaction pathways were investigated by density functional theory calculations, one pathway involving intermolecular nucleophilic addition of free indole to aurated allene intermediate and another pathway involving intramolecular nucleophilic addition of aurated indole to allene via diaurated intermediate E2 . Calculated results revealed that the reaction likely proceeds via the first pathway with a lower activation energy. The role of AuI AuI interactions in affecting the enantioselectivity is discussed.  相似文献   

18.
The synthesis, reactivity, and potential of well‐defined dinuclear gold complexes as precursors for dual gold catalysis are explored. Using the preorganizing abilities of the ditopic PNHPiPr ( LH ) ligand, dinuclear AuI–AuI complex 1 and mixed‐valent AuI–AuIII complex 2 provide access to structurally characterized chlorido‐bridged cationic species 3 and 4 upon halide abstraction. For 2 , this transformation involves unprecedented two‐electron oxidation of the redox‐active ligand, generating a highly rigidified environment for the Au2 core. Facile reaction with phenylacetylene affords the σ,π‐activated phenylacetylide complex 5 . When applied in the dual gold heterocycloaddition of a urea‐functionalized alkyne, well‐defined precatalyst 3 provides high regioselectivities for the anti‐Markovnikov product, even at low catalyst loadings, and outperforms common mononuclear AuI systems. This proof‐of‐concept demonstrates the benefit of preorganization of two gold centers to enforce selective non‐classical σ,π‐activation with bifunctional substrates.  相似文献   

19.
A new protocol for the synthesis of protic bis(N‐heterocyclic carbene) complexes of AuI by a stepwise metal‐controlled coupling of isocyanide and propargylamine is described. They are used as tectons for the construction of supramolecular architectures through metalation and self‐assembly. Notably a unique polymeric chain of CuI with alternate AuI/bis(imidazolate) bridging scaffolds and strong unsupported CuI–CuI interactions has been generated, as well as a 28‐metal‐atoms cluster containing a nanopiece of Cu2O trapped by peripheral AuI/bis(imidazolate) moieties.  相似文献   

20.
(AsPh4)2[(μ-N2S2)(VCl5)2]. Synthesis, I.R. Spectrum, and Crystal Structure From the reaction of VCl4 and S3N2Cl2 in CCl4 solution a solid, black product mixture is obtained. From this, the title compound can be extracted by reaction with AsPh4Cl in CH2Cl2 solution. It can also be synthesized from AsPh4VCl5 and S3N3Cl3 in CH2Cl2 solution. The i.r. spectra of (AsPh4)2[(μ-N2S2)(VCl5)2] (black crystal plates) and AsPh4VCl5 (brown needles) are reported. The crystal structure of (AsPh4)2[(μ-N2S2)(VCl5)2] was determined by X-ray diffraction. It crystallizes in the monoclinic space group P21/c with two formula units per unit cell. The lattice constants are a = 1113.9, b = 1712.8, c = 1508.8 pm, β = 106.68°. The centrosymmetric [(μ-N2S2)(VCl5)2]2? ion consists of two quadratic-pyramidal VCl5 units which are linked via the N atoms of a N2S2 ring. The N2S2 ring shows positional disorder in two different orientations in the crystal. The AsPh4⊕ ions form (AsPh4⊕)2 pairs via inversion centers, each pair is surrounded by eight anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号