首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fabrication of silver nanoparticles covered with polymers with a well‐defined core–shell structure and the quantitative evaluation of the plasmonic enhancement effect on a photochemical reaction in the vicinity of these silver nanoparticles individually dispersed in a medium are described. The photocycloreversion reaction of a diarylethene polymer in the vicinity of silver nanoparticles was enhanced by 2–6 times relative to the reaction without the nanoparticles. The promotion of the photocycloreversion reaction is due to enhancement of the electromagnetic field near the surface of the silver core.  相似文献   

2.
Localized surface plasmon resonance (LSPR) excitation on the photochromic reaction of a diarylethene derivative (DE) was studied by surface enhanced Raman scattering (SERS). UV and visible light irradiations transform reversibly DE between open-form (OF) and closed-form (CF) isomers, respectively. A mixture of PMMA and DE (either OF or CF isomer) was spin-coated onto gold nanorods (GNRs) arrays, designed by electron beam lithography, with two localized surface plasmon resonances (LSPR) at distinct wavelengths, due to their anisotropy. The photochromic reaction rates from CF to OF isomers, under LSPR excitation, were monitored from SERS spectral changes under different polarizations, on the same GNR substrate to compare the effect of LSPR field strength. It appears that the photoisomerization rate was faster when LSPR was excited with the polarization parallel to the GNR long axis. The present results highlight a potential genuine mechanism, from near field LSPR excitation, involved in the photochromic enhancement of diarylethene photochromes.  相似文献   

3.
Cross‐linked liquid‐crystalline (LC) polymers with a mesomorphic diarylethene were prepared to demonstrate a versatile strategy for cross‐linked photochromic LC polymers as photomobile materials. Upon exposure to UV light to cause photocyclization of the diarylethene chromophore, the cross‐linked polymer films bend toward an actinic light source. By irradiation with visible light to cause a closed‐ring to open‐ring isomerization, the bent films revert to the initial flat state. Without visible‐light irradiation, the bent films remain bent even at 120 °C, indicating high thermal stability of the cross‐linked diarylethene LC polymers.  相似文献   

4.
A network composed of gold nanoparticles covered with diarylethene dithiophenols was prepared on an interdigitated nanogapped gold electrode to show the reversible photoswitching of the conductance due to the photochromism of the diarylethene molecules induced by UV and visible light.  相似文献   

5.
We demonstrate herein a promising pathway towards low‐energy CO2 capture and release triggered by UV and visible light. A photosensitive diarylethene ligand was used to construct a photochromic diarylethene metal–organic framework (DMOF). A local photochromic reaction originating from the framework movement induced by the photoswitchable diarylethene unit resulted in record CO2‐desorption capacity of 75 % under static irradiation and 76 % under dynamic irradiation.  相似文献   

6.
Abstract —The chemical modification of rabbit muscle aldolase by coupling with diazotized p -amino benzoate results in the preparation of a photosensitive enzyme. The photosensitivity is realized with the presence of arene diazothioether chromophores, due to the substitution on cysteine residues (eight groups per enzyme molecule). By absorption and emission spectroscopy it has been shown that at neutral p H visible light causes E→Z isomerization of the extrinsic chromophore. The reaction is thermally reversed with τ= 2.3 min at 24.3°C. Fading of the chromophore is observed after long irradiation time, especially in alkali solution; at p H 13 some of the diazo groups are exchanged with histidine residues to form azo derivatives of the imidazole anion. Optimum condition for photochromic behaviour of azoaldolase is irradiation with visible light centered at 450 nm, by using neutral solutions of the protein. Within the photochromic cycle slight differences have been observed in the gel electrophoretic behaviour of the azoprotein.  相似文献   

7.
A diarylethene dimer linked by a phenyl group was synthesized and the photochromic behavior was examined. Upon irradiation with ultraviolet light (λ=313 nm), a hexane solution of the diarylethene dimer (1a) turned purple blue. Upon further prolonged irradiation the color changed to blue. The purple-blue and blue colors are due to the formation of a dimer having one open- and one closed-ring forms (1b) and a dimer having two closed-ring forms (1c), respectively. Both 1b and 1c returned to 1a by irradiation with visible light (λ>500 nm). The photochromic reactivity was evaluated by measuring quantum yields of the photocyclization and photocycloreversion reactions. The photocyclization quantum yield was 0.50. The cycloreversion quantum yield from 1c to 1b (0.0026) was lower than that from 1b to 1a (0.0094).  相似文献   

8.
Reversible topographical changes were observed on a photochromic diarylethene microcrystalline film surface by alternate irradiation with UV and visible light. Two types of surfaces were prepared from this film: 1) Storage of the film at 30 °C for 24 hours in the dark after UV irradiation afforded a surface that was covered with needle‐shaped crystals, whose diameter and length were approximately 1 μm and 10 μm, respectively, and showed a superhydrophobic lotus effect. 2) Storage of the film at 70 °C for 3 hours in the dark caused the needle‐shaped crystals to be converted into larger rod‐like crystals (5∼8 μm wide and 20∼30 μm long) by Ostwald ripening and a disappearance of the lotus effect. The obtained activation energy of the formation of the needle‐ and rod‐shaped crystals was 143 and 162 kJ mol−1, respectively. Subsequent UV irradiation to the surface, which was followed by storage at 50 °C for 1 hour in the dark, gave a doubly rough structure; small needle‐shaped crystals were formed between the larger rod‐shaped crystals. The surface showed both superhydrophobic properties and the pinned effect of the water droplet: the petal effect. Fractal analysis of both surfaces were carried out using a box‐counting method, and the lotus effect was observed in the presence of smaller‐sized crystals, whilst the petal effect was observed with larger sized crystals (ca. 100 μm). We demonstrated that the hydrophobic property was controlled by the distribution in crystal size of the closed‐ring isomer of the diarylethene. Visible‐light irradiation of both rough surfaces afforded surfaces with cubic‐shaped micro‐crystals of the open‐ring isomer.  相似文献   

9.
Switchable supramolecular self-assemblies on the basis of interaction between melamine group containing photochromic diarylethene unit (DTE) and naphthalimide derivate (1) were designed and fabricated. 1 can gelate several aprotic solvents with different morphologies. The gel turned into partial gel in ethyl acetate with the addition of DTE as a guest molecule. Both the absorption and fluorescence spectra of the assembly can be reversibly switched by alternating UV/visible light irradiation. Meanwhile, the morphology of the coassembly of 1(2)·DTE changed to film from original pieces of gel 1 in ethyl acetate. When 1(2)·DTE was irradiated by UV light, the film morphology was converted into aggregated flakes. Moreover, the surface wettability of the complex can also be switched by light irradiation. The photochromic diarylethene unit is able to modulate the fluorescence and morphology of the assembled system only by virtue of light irradiation. Therefore, these results provide further insights into fluorescence and morphology controlling, especially application in upscale smart responsive materials.  相似文献   

10.
Photochromic reactions of diarylethene derivatives were detected at a single-molecule level by using a fluorescence technique. Fluorescent photoswitching molecules in which photochromic diarylethene and fluorescent bis(phenylethynyl)anthracene units are linked through an adamantyl spacer were synthesized, and switching of fluorescence upon irradiation with UV and visible light was followed in solution as well as on polymer films at the single-molecule level. Although in solution the fluorescence intensity gradually changed upon irradiation with UV and visible light, digital on/off switching between two discrete states was observed at the single-molecule level. The "on"- and "off"-times were dependent on the power of UV and visible light. When the power of UV and visible light was increased, the average on- and off-times became short in proportion to the reciprocal power of the light. The response-times were found to show distribution. The distribution of the on- and off-times is considered to reflect the difference in the micro-environment as well as conformation of the molecules.  相似文献   

11.
Recent advances in direct‐use plasmonic‐metal nanoparticles (NPs) as photocatalysts to drive organic synthesis reactions under visible‐light irradiation have attracted great interest. Plasmonic‐metal NPs are characterized by their strong interaction with visible light through excitation of the localized surface plasmon resonance (LSPR). Herein, we review recent developments in direct photocatalysis using plasmonic‐metal NPs and their applications. We focus on the role played by the LSPR of the metal NPs in catalyzing organic transformations and, more broadly, the role that light irradiation plays in catalyzing the reactions. Through this, the reaction mechanisms that these light‐excited energetic electrons promote will be highlighted. This review will be of particular interest to researchers who are designing and fabricating new plasmonic‐metal NP photocatalysts by identifying important reaction mechanisms that occur through light irradiation.  相似文献   

12.
A functionalized styrene monomer (1a) having a photochromic diarylethene chromophore with functional properties of photocoloration, photostability of the colored state, and thermal erasion by heating was synthesized, and the polymer and copolymers of 1a were prepared by radical polymerization and copolymerization. Their polymers exhibited excellent photocoloration and rapid thermal bleaching above 150 °C in solution and in the solid state as well as the performance of the monomeric diarylethene chromophore. In addition, the colored state has a high photostability under visible room light. The diarylethene homopolymer had a glass transition temperature (Tg) as high as polystyrene. The copolymer of 1a with N-1-adamantylmaleimide exhibited extremely high Tg above 200 °C with keeping the photofunctional performance. Such photochromic polymer and copolymers with high Tg can be potentially applied to rewritable display materials and image recordings by a write-by-light/erase-by-heat system.  相似文献   

13.
The molecular design for large photo-induced refractive index changes in transparent visible light region was proposed and realized with norbornadiene polymers and poly(vinyl cinnamate). The patterning of pure refractive-index contract on their transparent films was made with near-field scanning optical microscopy (NSOM). Reversible fluorescence patterning on polymer films is also presented by using controlled energy transfer from a fluorescent pyromethene to a photochromic diarylethene.  相似文献   

14.
The preparation of the first photochromic, organometallic derivative of the diarylethene class, the CpRu-complexed benzodimethyldihydropyrene 3, in which the organometallic is directly attached to the photochromic core, is described. The negative dark purple photochrome 3 readily bleaches to form the almost colorless cyclophanediene 3' on irradiation with visible light. The latter switches back to 3 either photochromically with UV light, electrochromically on reduction, or thermochromically on heating. Essentially quantitative conversion between the two states is possible. The open complex 3' thermally closes 2.6 times faster than the uncomplexed parent 2', but the closed form 3 opens with visible light at about 30% of the rate of uncomplexed 2. Both open forms, complexed 3' and uncomplexed 2' close equally fast with UV light.  相似文献   

15.
Formation and aggregation of photolytic gold nanoparticles at the surface of chitosan (CTO) films have been investigated. When thin films of chloroauric acid salt of CTO were irradiated with UV light in wet air at room temperature for 10 min, gold nanoparticles of approximately 10 nm size are formed at the film surface. Detailed X-ray photoelectron spectroscopy (XPS) study and field emission type scanning electron microscopy (FE-SEM) observation have been carried out to characterize gold nanoparticles at the film surface. The shift of Au(4f) peak to the higher energy side and broadening of full width at half-maximum in the XPS spectrum are the direct evidence of the existence of gold atoms and small clusters in the early stage of photolysis. According to FE-SEM observation, growth in the particle diameter and aggregation of nanoparticles were observed after prolonged irradiation, and, finally, the film surface was densely covered with gold particles of 20-100-nm size. Gold atoms and clusters could move in the film and precipitate to the irradiated surface. Chemical composition analysis further suggests that gold particles at the surface are covered with an ultrathin CTO layer, which is partly oxidized by oxygen and chlorinated by chlorine during photochemical reactions.  相似文献   

16.
Aggregation-induced emission(AIE) active photochromic molecules have attracted growing attention for their versatile applications.Here we designed and synthesized five newly unsymmetrical photochromic diarylethene(DAE) dyads(BTE1-5) by connecting tetraphenylethene(TPE) and aromatic substituent via bithienylethene(BTE) bridge.The chemical structures of those compounds were identified by ^1H NMR,13C NMR and HRMS.The absorption and emission of these dyads were investigated by UV-vis and fluore scence spectroscopy,respectively.The results showed that all those compounds exhibited typically AIE or aggregation-induced emission enhancement(AIEE) characteristic.Particularly,when an aggregationcaused quenching(ACQ) fluorophore(triphenylamine) was grafted to the molecule,connecting with TPE via BTE-bridge,the ACQ phenomenon was dissipated and converted to an AIE luminophore,and those compounds exhibited photochromism upon irradiation with alternative UV and visible light.The solution or solid of those compounds showed distinctly fluorescence switching "ON" or "OFF" observation upon irradiation with alternative UV and visible light.It is interesting that BTE1 could be applied in recording and rewritable information storage,and the cyclization quantum yields could be affected by substituent significantly.  相似文献   

17.
ZnO nanoparticles were modified with KF using thermal shock method at various temperatures in order to improve the photocatalytic activity of ZnO under both UVA and visible light irradiation. The influences of KF-modification on the crystal structure, morphology, UV–visible absorption, specific surface area as well as surface structure of ZnO were respectively characterized by XRD, FE-SEM, UV–Visible diffuse reflectance, N2 adsorption and XPS spectroscopy. The photocatalytic activity was evaluated via the degradation of methylene blue under UVA irradiation. According to the results, the thermal shock process with KF did not modify the structure, the particle size and the optical properties of ZnO nanoparticles but successfully increase their UVA and visible light induced photocatalytic activity. This enhancement of activity may be attributed to the increase of surface hydroxyl groups and zinc vacancies of modified ZnO samples.  相似文献   

18.
We used optical extinction spectroscopy to study the structure of proteins adsorbed onto gold nanoparticles of sizes 5-60 nm and their resulting biological binding activity. For these studies, proteins differing in size and shape, with well-characterized and specific interactions-rabbit immunoglobulin G (IgG), goat anti-rabbit IgG (anti-IgG), Staphylococcal protein A, streptavidin, and biotin-were used as model systems. Protein interaction with gold nanoparticles was probed by optical extinction measurements of localized surface plasmon resonance (LSPR) of the gold nanoparticles. Binding of the ligands in solution to protein molecules already immobilized on the surface of gold causes a small but detectable shift in the LSPR peak of the gold nanoparticles. This shift can be used to probe the binding activity of the adsorbed protein. Within the context of Mie theory calculations, the thickness of the adsorbed protein layer as well as its apparent refractive index is shown to depend on the size of the gold nanoparticle. The results suggest that proteins can adopt different orientations that depend on the size of the gold nanospheres. These different orientations, in turn, can result in different levels of biological activity. For example, we find that IgG adsorbed on spheres with diameter ≥20 nm does not bind to protein A. This study illustrates the principle that the size of nanoparticles can strongly influence the binding activity of adsorbed proteins. In addition to the importance of this in cases of direct exposure of proteins to nanoparticles, the results have implications for proteins adsorbed to materials with nanometer scale surface roughness.  相似文献   

19.
Photoactive film material of long-chain azobenzene derivative, p-(omega-trimethylammoniodecyloxy)-p'-octyloxyazobenzene bromide (TAOAB), was fabricated into a Langmuir-Blodgett (LB) film by a polyion-complex technique using poly(sodium 4-styrenesulfonate) as a polyanion. To investigate the effect of the packing state of the azobenzene chromophore on its orientation and cis-trans isomerization, TAOAB was mixed with methyl stearate in the LB film matrix at various mole fractions (X(TAOAB)), and structural characterizations were subsequently carried out by means of Fourier transform infrared and ultraviolet-visible spectroscopies, X-ray diffraction analysis, and atomic force microscopy. The results obtained show that as the degree of packing increases, both the azobenzene chromophores and the hydrocarbon chains orient more perpendicularly to the surface of the LB film. In addition, reversible cis-trans photoisomerization of TAOAB took place upon alternate irradiation with UV and visible light even in a mixed LB film with the chromophores in a dense lateral packing state. In the process of thermal cis-to-trans isomerization, we found that the reaction rate is strongly affected by the packing state of TAOAB at 20 degrees C, reflecting the differences in steric hindrance among LB films of various X(TAOAB). In addition, higher activation energy was obtained for thermal cis-to-trans isomerization when the free volume around the chromophores became smaller.  相似文献   

20.
Design of nanohybrid systems possessing several ruthenium trisbipyridine (Ru(bpy)(3)(2+)) chromophores on the surface of gold nanoparticles, by adopting a place exchange reaction, was reported and their photophysical properties were tuned by varying the density of chromophores. The charge shift between the excited and ground-state Ru(bpy)(3)(2+) chromophores was reported for the first time, leading to the formation of Ru(bpy)(3)(+) and Ru(bpy)(3)(3+). Electron-transfer products were not observed on decreasing the concentration of Ru(bpy)(3)(2+) functionalized on Au nanoparticles or in a saturated solution of unbound chromophores. The close proximity of the chromophores on periphery of the gold core may lead to an electron transfer reaction and the products sustained for several nanoseconds before undergoing recombination, probably due to the stabilizing effect of the polar ethylene glycol moieties embedded between the chromophore groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号