首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The rate constants of the reactions of HOI molecules with H, OH, O ((3)P), and I ((2)P(3/2)) atoms have been estimated over the temperature range 300-2500 K using four different levels of theory. Geometry optimizations and vibrational frequency calculations are performed using MP2 methods combined with two basis sets (cc-pVTZ and 6-311G(d,p)). Single-point energy calculations are performed with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (pertubatively) electron excitations CCSD(T) using the cc-pVTZ, cc-pVQZ, 6-311+G(3df,2p), and 6-311++G(3df,3pd) basis sets. Reaction enthalpies at 0 K were calculated at the CCSD(T)/cc-pVnZ//MP2/cc-pVTZ (n = T and Q), CCSD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p), and CCSD(T)/6-311++G(3df,3pd)//MP2/6-311G(d,p) levels of theory and compared to the experimental values taken from the literature. Canonical transition-state theory with an Eckart tunneling correction is used to predict the rate constants as a function of temperature. The computational procedure has been used to predict rate constants for H-abstraction elementary reactions because there are actually no literature data to which the calculated rate constants can be directly compared. The final objective is to implement kinetics of gaseous reactions in the ASTEC (accident source term evaluation code) program to improve speciation of fission products, which can be transported along the reactor coolant system (RCS) of a pressurized water reactor (PWR) in the case of a severe accident.  相似文献   

2.
The solvation of Cu+ by methanol (MeOH) was studied via examination of the kinetic energy dependence of the collision-induced dissociation of Cu+(MeOH)x complexes, where x = 1-6, with Xe in a guided ion beam tandem mass spectrometer. In all cases, the primary and lowest-energy dissociation channel observed is the endothermic loss of a single MeOH molecule. The primary cross section thresholds are interpreted to yield 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of multiple ion-neutral collisions, kinetic and internal energy distributions of the reactants, and lifetimes for dissociation. Density functional theory calculations at the B3LYP/6-31G* level are performed to obtain model structures, vibrational frequencies, and rotational constants for the Cu+(MeOH)x complexes and their dissociation products. The relative stabilities of various conformations and theoretical BDEs are determined from single-point energy calculations at the B3LYP/6-311+G(2d,2p) level of theory using B3LYP/6-31G*-optimized geometries. The relative stabilities of the various conformations of the Cu+(MeOH)x complexes and the trends in the sequential BDEs are explained in terms of stabilization gained from sd hybridization, hydrogen-bonding interactions, electron donor-acceptor natural bond orbital stabilizing interactions, and destabilization arising from ligand-ligand repulsion.  相似文献   

3.
The title unknown reaction is theoretically studied at various levels to probe the interaction mechanism between the ethynyl radical (HC triple bond C) and formaldehyde (H(2)C double bond O). The most feasible pathway is a barrier-free direct H-abstraction process leading to acetylene and formyl radical (C(2)H(2)+HCO) via a weakly bound complex, and then the product can take secondary dissociation to the final product C(2)H(2)+CO+H. The C-addition channel leading to propynal plus H-atom (HCCCHO+H) has the barrier of only 3.6, 2.9, and 2.1 kcal/mol at the CCSD(T)/6-311+G(3df,2p)MP2//6-311G(d,p)+ZPVE, CCSD(T)/6-311+G(3df,2p)//QCISD/6-311G(d,p)+ZPVE, and G3//MP2 levels, respectively [CCSD(T)--coupled cluster with single, double, and triple excitations; ZPVE--zero-point vibrational energy; QCISD--quadratic configuration interaction with single and double excitations; G3//MP2-Gaussian-3 based on Moller-Plesset geometry]. The O addition also leading to propynal plus H atom needs to overcome a higher barrier of 5.3, 8.7, and 3.0 kcalmol at the three corresponding levels. The title no-barrier reaction presents a new efficient route to remove the pollutant H(2)CO, and should be included in the combustion models of hydrocarbons. It may also represent the fastest radical-H(2)CO reaction among the available theoretical data. Moreover, it could play an important role in the interstellar chemistry where the zero- or minute-barrier reactions are generally favored. Discussions are also made on the possible formation of the intriguing propynal in space via the title reaction on ice surface.  相似文献   

4.
在CCSD(T)/6-311+G(2df)//B3LYP/6-311+G(d)水平下, 研究了四原子分子 [GeCN2]的各个异构体的几何结构、红外振动光谱、相对能量及异构化和解离稳定性, 构建了[GeCN2]势能面. 我们得到了7个[GeCN2]异构体, 包括5个直线型结构GeNCN (1), GeNNC (2), NGeCN (3), NGeNC (4), GeCNN (5)和2个环形结构Ge-cCNN (6)和Ge-cNCN (7). 其中异构体5, 6, 7是我们新找到的构型, 而且GeCNN (5)是整个势能面上稳定性仅次于GeNCN (1)的异构体. 几何和电子结构分析表明, GeCNN (5)具有共轭三键结构: Ge≡C—N≡N:. 由于具有良好的热力学和动力学稳定性, 异构体GeCNN (5)有望在实验中观测到. 我们建议利用过渡金属羰基化合物的络合作用可以进一步稳定GeCNN (5). 本研究为寻找新型含高周期元素的多重键化合物提供了理论线索.  相似文献   

5.
The structures, energies, stabilities and spectroscopies of doublet C4H2+ cations were explored at the DFT/B3LYP/6-311G(d,p), CCSD(T)/6-311+G(2df,2pd)(single-point), and G3B3 levels. Ten minimum isomers including the chainlike, three-member-ring, and four-member-ring structures are interconverted by means of 15 interconversion transition states. The potential energy surface was investigated. At the CCSD(T)/6-311+G(2df,2pd) and G3B3 levels, the global minimum isomer was found to be a linear HCCCCH. The structures of the stable isomer and its relevant transition state are further optimized at the QCISD/6-311G(d,p) level. The bonding nature and structure of isomer HCCCCH were analyzed.  相似文献   

6.
Stationary points of paths for H atom abstraction from CH(3)NHNH(2) (monomethylhydrazine) by NO(2) were characterized via CCSD(T)/6-311++G(3df,2p)//MPWB1K/6-31+G(d,p) and CCSD(T)/6-311+G(2df,p)//CCSD/6-31+G(d,p) calculations. Five transition states connecting CH(3)NHNH(2)-NO(2) complexes to a manifold that includes CH(3)NHNH-HONO, CH(3)NNH(2)-HONO, CH(3)NNH(2)-HNO(2), and CH(3)NHNH-HNO(2) complexes were identified. Transition states that connect CH(3)NHNH-HONO, CH(3)NNH(2)-HONO, CH(3)NNH(2)-HNO(2), and CH(3)NHNH-HNO(2) complexes to each other via H atom exchange and/or hindered internal rotation were also identified. The high point in the minimum energy path from the CH(3)NHNH(2) + NO(2) reactant asymptote to the manifold of HONO-containing product states is a transition state 8.6 kcal/mol above the reactant asymptote. From a kinetics standpoint, this value is considerably higher than the 5.9 kcal/mol value that was estimated for it based on theoretical results for H atom abstraction from NH(3) by NO(2).  相似文献   

7.
A direct dynamics method is employed to study the hydrogen abstraction reaction of CH3CH2F+Cl. Three distinct transition states are located, one for -H abstraction and two for β-H abstraction. The potential energy surface (PES) information is obtained at the QCISD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p), CCSD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p) and G2//MP2/6-311G(d,p) level. Based on the QCISD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p) results, the rate constants of the three reaction channels are evaluated by using the canonical variational transition state theory (CVT) with small-curvature tunneling (SCT) contributions over the temperature range of 220–2800 K. The calculated results indicate that -H abstraction dominates the total reaction almost over the whole temperature range.  相似文献   

8.
在MP2/6-311+ +G(3d,3p)电子相关校正水平上,对CH3F二聚体可能存在的几何构型进行全自由度能量梯度优化和频率验证,发现3种势能面上有极小点的构型.进一步在高级电子相关校正的MP4S-DTQ、CCSD(T)/6-311+ +G(3df,3pd)方法水平上,对其中总能量最小的构型进行精确计算,得到二聚体的结合能为-9.707kJ/mol.研究结果支持了由光谱实验结果推测的构型,解释了CH3F二聚体的谐振频率的多样性.  相似文献   

9.
理论研究了羟基负离子(OH-)与氟氯代甲烷(CH2ClF)反应的阴离子产物通道. 分别在B3LYP/6-31+G(d,p)和B3LYP/6-311++G(2d,p)水平上得到反应势能面上各关键物种的优化构型, 进而计算得到谐振频率和零点能. 基于CCSD(T)/6-311+G(3df,3dp)水平的相对能量, 描述了由质子转移和双分子亲核取代(SN2)过程生成各阴离子产物的途径. 各阴离子产物途径势垒的计算结果表明质子转移过程是实验中的主要产物通道, 与以往实验测量的结论相符. 此外, 计算还显示双分子亲核取代过程得到了非典型的阴离子产物, 其中动力学效应可能会导致F-的生成.  相似文献   

10.
An evaluation of harmonic vibrational frequency scale factors   总被引:1,自引:0,他引:1  
Scale factors for obtaining fundamental vibrational frequencies, low-frequency vibrational frequencies, zero-point vibrational energies (ZPVEs), and thermal contributions to enthalpy and entropy have been derived through a least-squares approach from harmonic frequencies determined at more than 100 levels of theory. Wave function procedures (HF, MP2, QCISD, QCISD(T), CCSD, and CCSD(T)) and a large and representative range of density functional theory (DFT) approaches (B3-LYP, BMK, EDF2, M05-2X, MPWB1K, O3-LYP, PBE, TPSS, etc.) have been examined in conjunction with basis sets such as 6-31G(d), 6-31+G(d,p), 6-31G(2df,p), 6-311+G(d,p), and 6-311+G(2df,p). The vibrational frequency scale factors were determined by a comparison of theoretical harmonic frequencies with the corresponding experimental fundamentals utilizing a standard set of 1066 individual vibrations. ZPVE scale factors were generally obtained from a comparison of the computed ZPVEs with experimental ZPVEs for a smaller standard set of 39 molecules, though the effect of expansion to a 48 molecule data set was also examined. In addition to evaluating the scale factors for a wide range of levels of theory, we have also probed the effect on scale factors of varying the percentage of incorporated exact exchange in hybrid DFT calculations using a modified B3-LYP functional. This has revealed a near-linear relationship between the magnitude of the scale factor and the proportion of exact exchange. Finally, we have investigated the effect of basis set size on HF, MP2, B3-LYP, and BMK scale factors by deriving values with basis sets ranging from 6-31G(d) up to 6-311++G(3df,3pd) as well as with basis sets in the cc-pVnZ and aug-cc-pVnZ series and with the TZV2P basis.  相似文献   

11.
Threshold collision-induced dissociation techniques are employed to determine the bond dissociation energies of a wide variety of copper cation-pi complexes, Cu(+)(pi-ligand), where pi-ligand = benzene, flurobenzene, chlorobenzene, bromobenzene, iodobenzene, phenol, toluene, anisole, pyrrole, N-methylpyrrole, indole, naphthalene, aniline, N-methylaniline, and N,N-dimethylaniline. The primary and lowest energy dissociation pathway corresponds to the endothermic loss of the intact neutral pi-ligand for all complexes except those to N-methylpyrrole, indole, aniline, N-methylaniline, and N,N-dimethylaniline. In the latter complexes, the primary dissociation pathway corresponds to loss of the intact ligand accompanied by charge transfer, thereby producing a neutral copper atom and ionized pi-ligand. Fragmentation of the pi-ligands is also observed at elevated energies in several cases. Theoretical calculations at the B3LYP/6-311G(d,p) level of theory are used to determine the structures, vibrational frequencies, and rotational constants of these complexes. Multiple low-energy conformers are found for all of the copper cation-pi complexes. Theoretical bond dissociation energies are determined from single point energy calculations at the B3LYP/6-311+G(3df,2p) level of theory using the B3LYP/6-311G(d,p) optimized geometries. The agreement between theory and experiment is very good for most complexes. The nature and strength of the binding in these copper cation-pi complexes are studied and compared with the corresponding cation-pi complexes to Na(+). Natural bond orbital analyses are carried out to examine the influence of the d orbital occupation on copper cation-pi interactions.  相似文献   

12.
Collision-induced dissociation of complexes of Cu+ bound to a variety of N-donor ligands (N-L) with Xe is studied using guided ion beam tandem mass spectrometry. The N-L ligands examined include pyridine, 4,4-dipyridyl, 2,2-dipyridyl, and 1,10-phenanthroline. In all cases, the primary and lowest-energy dissociation channel observed corresponds to the endothermic loss of a single intact N-L ligand. Sequential dissociation of additional N-L ligands is observed at elevated energies for the pyridine and 4,4-dipyridyl complexes containing more than one ligand. Ligand exchange processes to produce Cu+Xe are also observed as minor reaction pathways in several systems. The primary cross section thresholds are interpreted to yield 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of multiple ion-neutral collisions, the kinetic and internal energy distributions of the reactants, and dissociation lifetimes. Density functional theory calculations at the B3LYP/6-31G* level are performed to obtain model structures, vibrational frequencies, and rotational constants for the neutral N-L ligands and the Cu+(N-L)x complexes. The relative stabilities of the various conformations of these N-L ligands and Cu+(N-L)x complexes as well as theoretical BDEs are determined from single point energy calculations at the B3LYP/6-311+G(2d,2p) level of theory using B3LYP/6-31G* optimized geometries. Excellent agreement between theory and experiment is observed for all complexes containing one or two N-L ligands, while theory systematically underestimates the strength of binding for complexes containing more than two N-L ligands. The ground-state structures of these complexes and the trends in the sequential BDEs are explained in terms of stabilization gained from sd-hybridization and repulsive ligand-ligand interactions. The nature of the binding interactions in the Cu+(N-L)x complexes are examined via natural bond orbital analyses.  相似文献   

13.
Quantum chemistry calculations at the density functional theory (DFT) (B3LYP), MP2, QCISD, QCISD(T), and CCSD(T) levels in conjunction with 6-311++G(2d,2p) and 6-311++G(2df,2p) basis sets have been performed to explore the binding energies of open-shell hydrogen bonded complexes formed between the HOCO radical (both cis-HOCO and trans-HOCO) and trans-HCOOH (formic acid), H(2)SO(4) (sulfuric acid), and cis-cis-H(2)CO(3) (carbonic acid). Calculations at the CCSD(T)∕6-311++G(2df,2p) level predict that these open-shell complexes have relatively large binding energies ranging between 9.4 to 13.5 kcal∕mol and that cis-HOCO (cH) binds more strongly compared to trans-HOCO in these complexes. The zero-point-energy-corrected binding strengths of the cH?Acid complexes are comparable to that of the formic acid homodimer complex (~13-14 kcal∕mol). Infrared fundamental frequencies and intensities of the complexes are computed within the harmonic approximation. Infrared spectroscopy is suggested as a potential useful tool for detection of these HOCO?Acid complexes in the laboratory as well as in various planetary atmospheres since complex formation is found to induce large frequency shifts and intensity enhancement of the H-bonded OH stretching fundamental relative to that of the corresponding parent monomers. Finally, the ability of an acid molecule such as formic acid to catalyze the inter-conversion between the cis- and trans-HOCO isomers in the gas phase is also discussed.  相似文献   

14.
The structural and vibrational properties of the transition state of the N(2)O + X (X = Cl,Br) reactions have been characterized by ab initio methods using density functional theory. We have employed Becke's hybrid functional (B3LYP), and transition state optimizations were performed with 6-31G(d), 6-311G(2d,2p), 6-311+G(3d,2p), and 6-311+G(3df,2p) basis sets. For the chlorine atom reaction the coupled-cluster method (CCSD(T)) with 6-31G(d) basis set was also used. All calculations resulted in transition state structures with a planar cis arrangement of atoms for both reactions. The geometrical parameters of transition states at B3LYP are very similar, and the reaction coordinates involve mainly the breaking of the N-O bond. At CCSD(T)/6-31G(d) level a contribution of the O-Cl forming bond is also observed in the reaction coordinate. In addition, several highly accurate ab initio composite methods of Gaussian-n (G1, G2, G3), their variations (G2(MP2), G3//B3LYP), and complete basis set (CBS-Q, CBS-Q//B3LYP) series of models were applied to compute reaction energetics. All model chemistries predict exothermic reactions. The G3 and G2 methods result in the smallest deviations from experiment, 1.8 and 0 kcal mol(-1), for the enthalpies of reaction for N(2)O reaction with chlorine and bromine, respectively. The G3//B3LYP and G1 methods perform best among the composite methods in predicting energies of the transition state, with a deviation of 1.9 and 3.0 kcal mol(-1), respectively, in the activation energies for the above processes. However, the B3LYP/6-311+G(3df,2p) method gives smaller deviations of 0.4 and -1.0 kcal mol(-1), respectively. The performance of the methodologies applied in predicting transition state energies was analyzed.  相似文献   

15.
Ab initio molecular orbital calculations are reported for small neutral molecules and cations containing magnesium, nitrogen and hydrogen. Structures have been optimized using gradient techniques at B3LYP/6-31+G(d) and at MP2(full)/6-311++G(d,p). Single-point calculations are reported at QCISD(T)(full)/6-311++G(2df,p) and at CCSD(T)(full)/6-311++G(2df,p) levels using geometries optimized at MP2(full)/6-311++G(d,p). Standard enthalpies of formation at 298 K have been calculated at these two higher levels of theory. Other thermochemical properties calculated include ionization energies and proton affinities. The binding enthalpies of ammonia to Mg+, MgNH2+ and MgNH3+ are also reported.  相似文献   

16.
The ability of the composite three-layer ONIOM G2R3 (OG2R3) method to match experimental dissociation energies for group 13-15 donor-acceptor complexes was examined for a database of 34 complexes. The composite approach provides energies that agree reasonably with experiment, performing nearly as well as both the CCSD(T)/aug-CC-pVTZ and CCSD(T)/6-311+G(2df, 2p) models for small molecules and nearly as well as the latter for slightly larger ones. Broadly, all three models exhibit average absolute errors of ~3 kcal mol(-1) , and root mean square errors of ~4 kcal mol(-1) . The average signed error suggest that the OG2R3 approach systematically underbinds by ~2.3 kcal mol(-1) ; if this is used as a general correction, the approach performs as well or better than the pure CCSD(T) models. However, the OG2R3 model can be applied to molecules too large to be studied by the other CCSD(T) methods, as it requires only a fraction of the time and computer resources.  相似文献   

17.
We investigated two-body (binary) and three-body (triple) dissociations of ethanedial, propanal, propenal, n-butane, 1-butene, and 1,3-butadiene on the ground potential-energy surfaces using quantum-chemical and Rice-Ramsperger-Kassel-Marcus calculations; most attention is paid on the triple dissociation mechanisms. The triple dissociation includes elimination of a hydrogen molecule from a combination of two separate terminal hydrogen atoms; meanwhile, the rest part simultaneously decomposes to two stable fragments, e.g., C(2)H(4), C(2)H(2), or CO. Transition structures corresponding to the concerted triple dissociation were identified using the B3LYP/6-311G(d,p) level of theory and total energies were computed using the method CCSD(T)/6-311+G(3df, 2p). The forward barrier height of triple dissociation has a trend of ethanedial < propanal < propenal < n-butane < 1-butene < 1,3-butadiene, pertaining to the reaction enthalpy. Ratios of translational energies of three separate fragments could be estimated from the transition structure of triple dissociation. The synchronous concerted dissociation of propanal, propenal, and 1-butene leading to three different types of molecular fragments by breaking nonequivalent chemical bonds is rare. The triple dissociation of propanal, n-butane, 1-butene, and 1,3-butadiene were investigated for the first time. To outline a whole picture of dissociation mechanisms, some significant two-body dissociation channels were investigated for the calculations of product branching ratios. The triple dissociation plays an important role in the three carbonyl compounds, but plays a minor or negligible role in the three hydrocarbons.  相似文献   

18.
The potential energy surface for protonated acetylene has been re-examined with large basis sets and highly correlated methods. The energy difference of 3.6–3.8 kcal/mol between the classical structure and non-classical (bridged) structure computed with CCSD (T)/cc-pVQZ, CCSD(T)/6-311+G(3df,2pd), BD(T)/cc- pVQZ, BD(T)/6-311+G(3df,2pd) and CBS-APNO methods is in very good agreement with the best previous calculations, 3.7–4.0 kcal/mol. In contrast, BLYP, B3LYP, PW91, PBE and TPSS density functional methods do rather poorly, yielding −0.52. 0.29, 1.81, 2.16 and 0.62 kcal/mol, respectively, with the 6-311+G(3df,2pd) basis. MP2 calculations predict the classical structure to be a transition state; however, frequency calculations at the CCSD/6-311+G(3df,2pd) level of theory show that the classical structure is a local minimum. CCSD(T), BD(T) and CBS-APNO energy calculations along the MP2/6-311+G(3df,2pd) reaction path indicate that the classical structure is a shallow local minimum separated from the non-classical structure by a very small barrier of 0.11–0.13 kcal/mol. Because the barrier for proton exchange between the non-classical isomers via the classical structure is broad and nearly flat at the top, the tunneling splitting should be reduced, possibly accounting for the 15% difference between the calculated and experimental barrier heights. Contribution to the Fernando Bernardi Memorial Issue.  相似文献   

19.
Density functional theory (DFT) with the Becke's three-parameter exchange correlation functional and the functional of Lee, Yang and Parr, gradient-corrected functionals of Perdew, and Perdew and Wang [the DFT(B3LYP), DFT(B3P86) and DFT(B3PW91) methods, respectively], and several levels of conventional ab initio post-Hartree-Fock theory (second- and fourth-order perturbation theory M?ller-Plesset MP2 and MP4(SDTQ), coupled cluster with the single and double excitations (CCSD), and CCSD with perturbative triple excitation [CCSD(T)], configuration interaction with the single and double excitations [CISD], and quadratic configuration interaction method [QCISD(T)], using several basis sets [ranging from a simple 6-31G(d,p) basis set to a 6-311+ +G(3df, 2pd) one], were applied to study of the molecular structure (geometrical parameters, rotational constants, dipole moment) and harmonized infrared (IR) spectrum of formaldehyde (CH2O). High-level ab initio methods CCSD(T) and QCISD(T) with the 6-311+ +G(3df, 2pd) predict correctly molecular parameters, vibrational harmonic wavenumbers and the shifts of the harmonic IR spectrum of 12CH2 16O upon isotopic substitution. Received: 30 January 1997 / Accepted: 7 May 1997  相似文献   

20.
理论研究了羟基负离子(OH-)与氟氯代甲烷(CH2CIF)反应的阴离子产物通道.分别在B3LYP/6-31+G(d,p)和B3LYP/6-311++G(2d,p)水平上得到反应势能面上各关键物种的优化构型,进而计算得到谐振频率和零点能.基于CCSD(T)/6-311+G(3df,3dp)水平的相对能量,描述了由质子转移和双分子亲核取代(SN2)过程生成各阴离子产物的途径.各阴离子产物途径势垒的计算结果表明质子转移过程是实验中的主要产物通道,与以往实验测量的结论相符.此外,计算还显示双分子亲核取代过程得到了非典型的阴离子产物,其中动力学效应可能会导致F-的生成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号