首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We have measured quantum states of the solvent-solute system of phthalocyanine in superfluid helium droplets in a high resolution pump-probe experiment. This provides evidence for the attribution of a splitting effect in the emission spectra of phthalocyanine in helium droplets to the relaxation of the first helium layer upon electronic excitation, measured recently by us. Our experimental results are a strong indication for the first helium layer playing a key roll for the solvation of molecules in helium droplets and, thus, for their spectroscopic features.  相似文献   

2.
Van der Waals clusters of phthalocyanine with 1-4 argon atoms formed inside superfluid helium nanodroplets have been investigated by recording fluorescence excitation spectra as well as emission spectra. The excitation spectra feature a multitude of sharp lines when recorded in superfluid helium droplets in contrast to the respective spectra measured in a seeded supersonic beam (Cho et al. Chem. Phys. Lett. 2000, 326, 65). The pickup technique used for doping of the phthalocyanine and the argon into the droplets allows for nondestructive analysis of the cluster sizes. Alternation of the pickup sequence gives information on the binding site of the argon atoms. The investigation of dispersed emission spectra in helium droplets can be used as a special tool for the identification of 0(0)0 transitions within the variety of sharp lines seen in the excitation spectra. Thus, different isomers of the clusters can be distinguished. Moreover, the emission spectra reveal information on dynamic processes such as vibrational predissociation of the van der Waals complexes and interconversion among isomeric species. The binding energy of the phthalocyanine-argon1 complex in helium droplets was estimated to be at most 113 cm-1.  相似文献   

3.
Experimental and theoretical investigations of the spectroscopy of molecules in superfluid helium droplets provide evidence for the key role of the first helium layer surrounding the dopant molecule in determining the molecule's spectroscopic features. Recent investigations of emission spectra of phthalocyanine in helium droplets revealed a doubling of all transitions. Herein, we present the emission spectra of Mg-phthalocyanine and of phthalocyanine-argon clusters in helium droplets, which confirm the splitting as a general effect of the helium environment. A scheme of levels is deduced from the emission spectra and attributed to quantized states of the first helium layer surrounding the dopant molecule.  相似文献   

4.
We present a detailed study of the energetics, structures, and Bose properties of small clusters of (4)He containing a single nitrous oxide (N(2)O) molecule, from N=1 (4)He up to sizes corresponding to completion of the first solvation shell around N(2)O (N=16 (4)He). Ground state properties are calculated using the importance-sampled rigid-body diffusion Monte Carlo method, rotational excited state calculations are made with the projection operator imaginary time spectral evolution method, and Bose permutation exchange and associated superfluid properties are calculated with the finite temperature path integral method. For N< or =5 the helium atoms are seen to form an equatorial ring around the molecular axis, at N=6 helium density starts to occupy the second (local) minimum of the N(2)O-He interaction at the oxygen side of the molecule, and N=9 is the critical size at which there is onset of helium solvation all along the molecular axis. For N> or =8 six (4)He atoms are distributed in a symmetric, quasirigid ring around N(2)O. Path integral calculations show essentially complete superfluid response to rotation about the molecular axis for N> or =5, and a rise of the perpendicular superfluid response from zero to appreciable values for N> or =8. Rotational excited states are computed for three values of the total angular momentum, J=1-3, and the energy levels fitted to obtain effective spectroscopic constants that show excellent agreement with the experimentally observed N dependence of the effective rotational constant B(eff). The non-monotonic behavior of the rotational constant is seen to be due to the onset of long (4)He permutation exchanges and associated perpendicular superfluid response of the clusters for N> or =8. We provide a detailed analysis of the role of the helium solvation structure and superfluid properties in determining the effective rotational constants.  相似文献   

5.
High resolution IR spectra of aniline, styrene, and 1,1-diphenylethylene cations embedded in superfluid helium nanodroplets have been recorded in the 300-1700 cm(-1) range using a free-electron laser as radiation source. Comparison of the spectra with available gas phase data reveals that the helium environment induces no significant matrix shift nor leads to an observable line broadening of the resonances. In addition, the IR spectra have provided new and improved vibrational transition frequencies for the cations investigated, as well as for neutral aniline and styrene. Indications have been found that the ions desolvate from the droplets after excitation by a non-evaporative process in which they are ejected from the helium droplets. The kinetic energy of the ejected ions is found to be ion specific and to depend only weakly on the excitation energy.  相似文献   

6.
We have recorded the electronic spectra of three polycyclic aromatic hydrocarbons (acenaphtylene, fluoranthene, and benzo(k)fluoranthene) containing a five-member ring and their van der Waals complexes with argon and oxygen with a molecular beam superfluid helium nanodroplet spectrometer. Although the molecules, which differ by addition of one or two fused benzene rings to acenaphtylene, have the same point group symmetry, the spectral lineshapes show distinct differences in the number of zero phonon lines and shapes of the phonon wings. Whereas the smallest molecule (acenaphtylene) has the most complicated line shape, the largest molecule (benzo(k)fluoranthene) shows different lineshapes for different vibronic transitions. The van der Waals complexes of fluoranthene exhibit more peaks than the theoretically allowed number of isomeric complexes with argon/oxygen. The current models of molecular solvation in liquid helium do not adequately explain these discrepancies.  相似文献   

7.
We present results of path integral Monte Carlo simulations of LiH solvated in superfluid 4He clusters of size up to N = 100. Despite the light mass of LiH and the strongly anisotropic LiH-He potential with a large repulsion at the hydrogen end, LiH is solvated inside the cluster for sufficiently large N. Using path integral correlation function analysis, we have determined the dipole (J = 1) rotational excitations of the cluster and a corresponding effective rotational constant Beff of the solvated LiH. We predict that Beff is greatly reduced with respect to the gas-phase rotational constant B, to a value of only about 6% of B. This exceptionally large reduction of the rotational constant is due to the highly anisotropic 4He solvation structure around LiH. It does not follow the previously established trend of a relatively small B reduction for light molecules, showing the strongest reduction of all molecules in 4He to date. Comparison of the calculated rotational spectra of LiH in helium obeying Bose and Boltzmann statistics, respectively, demonstrates that the Bose statistics of helium is an essential requirement for obtaining well-defined molecule rotational spectra in helium-4.  相似文献   

8.
Electronic spectra of molecules doped into superfluid (4)He nanodroplets reveal important details of the microsolvation in superfluid helium. The vibrational fine structure in the electronic spectra of phthalocyanine derivatives and pyrromethene dye molecules doped into superfluid helium droplets have been investigated. Together with previous studies on anthracene derivatives [J. Chem. Phys.2010, 133, 114505] and 3-hydroxyflavone [J. Chem. Phys.2009, 131, 194307], the line shapes vary between two limiting cases, namely, sharp Lorentzians and nonresolved vibrational fine structure. All different spectral signatures are initiated by the same effect, namely, the change of the electron density distribution initiated by the electronic excitation. This change can be quantified by the difference of the electrostatic moments of the molecule in the electronic ground state and the corresponding Franck-Condon point in the excited state. According to the experimental data, electronic spectroscopy suffers from drastic line broadening when accompanied by significant changes of the charge distribution, in particular, changes of the dipole moment. Vice versa, the vibrational fine structure in electronic spectra of molecules doped into helium droplets is highly sensitive to changes of the electron density distribution.  相似文献   

9.
Recent measurements of the emission spectrum of phthalocyanine solvated in superfluid helium nanodroplets exhibit a constant 10.3 cm(-1) splitting of each emission line relative to the absorption spectrum. This splitting has been attributed to two distinct helium environments near the surface of the phthalocyanine molecule. Rigid-body path-integral Monte Carlo provides a means of investigating the origin of the splitting on a detailed microscopic level. Path-integral Monte Carlo simulations of 4He(N)-phthalocyanine at 0.625 K with N ranging from 24 to 150 show two distinct helium configurations. One configuration is commensurate with the molecular substrate and the other is a triangular lattice. We investigate the energetics of these two configurations and use a method for calculating electronic spectral shifts for aromatic molecule-rare-gas clusters due to dispersive interactions to estimate the spectral splitting that would arise from the two helium configurations seen for N=150. The results are in reasonable agreement with the experimentally measured splitting, supporting the existence of two distinct local helium environments near the surface of the molecule in the nanodroplets.  相似文献   

10.
The laser-induced fluorescence (LIF) excitation spectra of free base phthalocyanine (Pc), Mg-Pc, and Zn-Pc molecules in superfluid helium droplets at T=0.38 K have been studied. The spectra reveal the rich vibronic structure of the S(1)<--S(0) electronic transitions. The band origins of the transitions consist of zero phonon lines accompanied by phonon wings, which originate from simultaneous electronic excitation of the molecule and excitation of the collective modes of the helium surrounding it. The phonon wings have discrete structures suggesting localization of some helium atoms in the neighborhood of the molecules. Zero phonon lines of Mg-Pc and Zn-Pc molecules are split into three components, which are separated by 0.2-0.4 cm(-1). Possible mechanism of splitting involves static or dynamic Jahn-Teller interaction of metal-phthalocyanine molecules in the twofold degenerate S(1)((1)E(u)) state with the helium shell.  相似文献   

11.
Electronic spectra of the S1<--S0 transition of the 3,4,9,10-perylenetetracarboxylic-dianhydrid (PTCDA) monomer isolated in superfluid helium nanodroplets have been measured by means of laser-induced fluorescence. The 0(0)(0) transition appears at 20,988 cm(-1) as the dominant line. We obtain clearly resolved the vibrational structure of the molecule. A comparison to Raman spectra of PTCDA films on metallic substrates and PTCDA crystals as well as with calculated frequencies provides the identification of the different modes. The enhanced resolution in the low temperature helium environment and the obtained line positions provide new information about structural properties of perylene derivatives.  相似文献   

12.
Electron impact (EI) mass spectra of a selection of C1-C3 haloalkanes in helium nanodroplets have been recorded to determine if the helium solvent can significantly reduce molecular ion fragmentation. Haloalkanes were chosen for investigation because their EI mass spectra in the gas phase show extensive ion fragmentation. There is no evidence of any major softening effect in large helium droplets ( approximately 60 000 helium atoms), but some branching ratios are altered. In particular, channels requiring C-C bond fission or concerted processes leading to the ejection of hydrogen halide molecules are suppressed by helium solvation. Rapid cooling by the helium is not sufficient to account for all the differences between the helium droplet and gas phase mass spectra. It is also suggested that the formation of a solid "snowball" of helium around the molecular ion introduces a cage effect, which enhances those fragmentation channels that require minimal disruption to the helium cage for products to escape.  相似文献   

13.
Electron impact (70 eV) mass spectra of a series of C1-C6 alcohols encased in large superfluid liquid helium nanodroplets (approximately 60,000 helium atoms) have been recorded. The presence of helium alters the fragmentation patterns when compared with the gas phase, with some ion product channels being more strongly affected than others, most notably cleavage of the C(alpha)-H bond in the parent ion to form the corresponding oxonium ion. Parent ion intensities are also enhanced by the helium, but only for the two cyclic alcohols studied, cyclopentanol and cyclohexanol, is this effect large enough to transform the parent ion from a minor product (in the gas phase) into the most abundant ion in the helium droplet experiments. To demonstrate that these findings are not unique to alcohols, we have also investigated several ethers. The results obtained for both alcohols and ethers are difficult to explain solely by rapid cooling of the excited parent ions by the surrounding superfluid helium, although this undoubtedly takes place. A second factor also seems to be involved, a cage effect which favors hydrogen atom loss over other fragmentation channels. The set of molecules explored in this work suggest that electron impact ionization of doped helium nanodroplets does not provide a sufficiently large softening effect to be useful in analytical mass spectrometry.  相似文献   

14.
We present evidence of halogen bond in iodine clusters formed in superfluid helium droplets based on results from electron diffraction. Iodine crystals are known to form layered structures with intralayer halogen bonds, with interatomic distances shorter than the sum of the van der Waals radii of the two neighboring atoms. The diffraction profile of dimer dominated clusters embedded in helium droplets reveals an interatomic distance of 3.65 Å, much closer to the value of 3.5 Å in iodine crystals than to the van der Waals distance of 4.3 Å. The profile from larger iodine clusters deviates from a single layer structure; instead, a bi‐layer structure qualitatively fits the experimental data. This work highlights the possibility of small halogen bonded iodine clusters, albeit in a perhaps limited environment of superfluid helium droplets. The role of superfluid helium in guiding the trapped molecules into local potential minima awaits further investigation.  相似文献   

15.
The role of solute-solvent and solvent-solvent interaction on the preferential solvation characteristics of 2,6-diaminoanthraquinone (DAAQ) has been analysed by monitoring the optical absorption and fluorescence emission spectra. Binary mixtures consist of dimethylformamide (DMF)-ethanol (EtOH), DMF-dimelthylsulfoxide (DMSO), benzene (BZ)-DMF and acetonitrile (ACN)-DMF. The optical absorption spectra maximum and emission spectra maximum of DAAQ show the changes with varying the solvents and change in the composition in the case of binary mixtures. Non-ideal solvation characteristics are observed in all binary mixtures. It is found that at certain concentrations two mixed solvents interact to form a common structure with a nu(12) (wave number in cm(-1)) value not always intermediate (nu(1) and nu(2)) between the values of the solvents mixed. Synergistic effect is observed in the case of DMF-EtOH mixtures. The preferential solvation parameters local mole fraction X(2)(L), solvation index delta(S2), exchange constant K(12) are calculated in all binary mixtures expect in the case of DMF-BZ mixture and DMF-EtOH mixture in the ground state. We have also monitored excitation wavelength effect on the probe molecule in aprotic polar and protic polar solvents.  相似文献   

16.
17.
Electronic structure calculations, steady-state electronic spectroscopy, and femtosecond time-resolved emission spectroscopy are used to examine the photophysics of trans-4-(dimethylamino)-4'-cyanostilbene (DCS) and its solvent dependence. Semiempirical AM1/CI calculations suggest that an anilino TICT state is a potential candidate for the emissive state of DCS in polar solvents. But observation of large and solvent-independent absorption and emission transition moments in a number of solvents (M(abs) = 6.7 +/- 0.4 D and M(em) = 7.6 +/- 0.8 D) rule out the involvement of any such state, which would have a vanishingly small transition moment. The absorption and steady-state emission spectra of DCS evolve in a systematic manner with solvent polarity, approximately as would be expected for a single, highly polar excited state. Attempts to fit the solvatochromism of DCS using standard dielectric continuum models are only partially successful when values of the solute dipole moments suggested by independent measurements are assumed. The shapes of the absorption and emission spectra of DCS change systematically with solvent polarity in a manner that is semiquantitatively reproduced using a coupled-state model of the spectroscopy. Kerr-gate emission measurements show that the emission dynamics of DCS down to subpicosecond times reflect only solvent relaxation, rather than any more complicated electronic state kinetics. The spectral response functions measured with DCS are well correlated to those previously reported for the solvation probe coumarin 153, indicating DCS to be a useful alternative probe of solvation dynamics.  相似文献   

18.
Rovibrational spectra are measured for the HCCCN*HCN and HCN*HCCCN binary complexes in helium droplets at low temperature. Though no Q-branch is observed in the infrared spectrum of the linear HCN*HCCCN dimer, which is consistent with previous experimental results obtained for other linear molecules, a prominent Q-branch is found in the corresponding infrared spectrum of the HCCCN*HCN complex. This Q-branch, which is reminiscent of the spectrum of a parallel band of a prolate symmetric top, implies that some component of the total angular momentum is parallel to the molecular axis. The appearance of this particular spectroscopic feature is analyzed here in terms of a nonsuperfluid helium density induced by the molecular interactions. Finite temperature path integral Monte Carlo simulations are performed using potential energy surfaces calculated with second-order M?ller-Plesset perturbation theory, to investigate the structural and superfluid properties of both HCCCN*HCN(4He)N and HCN*HCCCN(4He)N clusters with N < or = 200. Explicit calculation of local and global nonsuperfluid densities demonstrates that this difference in the rovibrational spectra of the HCCCN*HCN and HCN*HCCCN binary complexes in helium can be accounted for by local differences in the superfluid response to rotations about the molecular axis, i.e., different parallel nonsuperfluid densities. The parallel and perpendicular nonsuperfluid densities are found to be correlated with the locations and strengths of extrema in the dimer interaction potentials with helium, differences between which derive from the variable extent of polarization of the CN bond in cyanoacetylene and the hydrogen-bonded CH unit in the two isomers. Calculation of the corresponding helium moments of inertia and effective rotational constants of the binary complexes yields overall good agreement with the experimental values.  相似文献   

19.
The vibrational wave-packet dynamics of diatomic rubidium molecules (Rb(2)) in triplet states formed on the surface of superfluid helium nanodroplets is investigated both experimentally and theoretically. Detailed comparison of experimental femtosecond pump-probe spectra with dissipative quantum dynamics simulations reveals that vibrational relaxation is the main source of dephasing. The rate constant for vibrational relaxation in the first excited triplet state 1(3)Σ(g)+ is found to be constant γ ≈ 0.5 ns(-1) for the lowest vibrational levels v ? 15 and to increase sharply when exciting to higher energies.  相似文献   

20.
通过成酰胺键的方式制备了一系列含羧基酞菁和白蛋白(牛血清白蛋白(BSA),人血清白蛋白(HSA))之间的共价结合物,所涉及到的酞菁分别是α-四(4-羧基苯氧基)酞菁锌(1)和α-四[4-(2-羧基乙基)苯氧基]酞菁锌(3),以及它们相应的β位四取代酞菁锌(化合物2和4).比较了游离酞菁以及它们的白蛋白结合物在磷酸盐缓冲溶液(PBS)中的光谱性质.结果表明,当酞菁被共价固定于白蛋白大分子上之后,展现出比游离酞菁更明显的单体特征吸收,而且结合物中的酞菁光谱特征不受体系pH值变化的影响.羧基在酞菁环上的取代位置,对酞菁与白蛋白结合前后的光谱转变幅度有影响,α位取代比β位取代更有利于光谱的变化.化合物1和3的白蛋白共价结合物在PBS溶液中甚至呈现出单体形式为主的光谱特征,Q带最大吸收波长分别位于697和706nm附近.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号