首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A comparison has been made of plasma-catalysis with thermal-catalysis and plasma alone for the removal of low concentrations of propane and propene from synthetic air using a one-stage, catalyst-in discharge configuration. In all cases, plasma-catalysis produces better hydrocarbon destructions (~40%) than thermal catalysis at low temperatures. At higher temperatures, little difference is observed between plasma-catalytic and thermal-catalytic operation. Plasma operation by itself had a similar effectiveness to plasma-catalysis at low temperatures but was significantly lower (up to 50%) as the temperature was raised. By examining the form of the temperature dependence for the plasma-catalytic destruction processes, it is possible to phenomenologically distinguish two contributions to the destruction; one that is specifically plasma-induced and another (at higher temperatures) in which both plasma and thermal activation have similar mechanisms.  相似文献   

2.
镍铁电池的工业应用及最新研究进展   总被引:1,自引:0,他引:1  
姜巍  吴耀明  程勇  王立民 《应用化学》2014,31(7):749-756
镍铁电池具有安全环保、成本低廉和使用寿命长等优点,广泛应用于电网储能、备用电源等领域。 此外,镍铁电池在电动汽车领域也表现出了良好的应用前景,受到许多国家的关注。 本文介绍了镍铁电池的原理和结构设计。 结合目前国内外镍铁电池的研发情况,概述了镍铁电池的综合性能和应用概况,重点围绕铁负极的问题,阐述了镍铁电池的研究现状与发展方向。  相似文献   

3.
The field of plasma source/mass spectrometry is critically reviewed and its current status assessed. An overview of PS/MS applications is provided and a discussion is offered of key problem areas that currently exist in the field. Areas that are now receiving strong research attention are outlined and a view is offered for future prospects of plasma source/mass spectrometry as a technique for the determination of elements.  相似文献   

4.
近年来, 随着科学研究的不断深入, 单原子催化剂由于具有高活性与高选择性等突出特点被广泛挖掘和应用. 作为连接多相与均相催化的桥梁, 单原子催化剂已经成为催化领域的重要研究对象之一, 具有广泛的工业化应用前景. 本文对单原子催化剂的发展历程、 特点及其在不同领域的应用进行了概括, 综合评述了当前CO2还原领域的技术经济分析, 并首次对单原子材料催化转化CO2进行了技术经济分析与计算. 最后, 对单原子催化剂在CO2还原领域中工业化应用的未来发展方向及亟需解决的关键科学和技术问题进行了展望, 以期推动单原子催化材料的进一步广泛应用.  相似文献   

5.
综述了CO2在高分子合成中的研究现状,介绍了以CO2为原料合成高分子的经典方法和新型等离子体聚合法,在此基础上对CO2在高分子材料领域中的应用作了展望。  相似文献   

6.
Opportunities abound to extend membrane markets for gas and vapor separations; however, the existing membrane materials, membrane structures and formation processes are inadequate to fully exploit these opportunities. The requirements for viability of membranes vary somewhat with each application. Nevertheless, the key requirements of durability, productivity and separation efficiency must be balanced against cost in all cases. The various ‘contender’ technologies for large scale gas separation membrane applications and the gas transport mechanisms are considered. The current spectrum of applications of gas separation membranes include; nitrogen enrichment, oxygen enrichment, hydrogen recovery, acid gas CO2, H2S removal from natural gas and dehydration of air and natural gas. The current status and the limitations faced by the available membrane materials for each of these applications are discussed. Two key technical challenges exist. Achieving higher permselectivity for the relevant application with at least equivalent productivity is the first of these challenges. Maintaining these properties in the presence of complex and aggressive feeds is the second challenge. Attractive avenues to overcome these challenges for each application will be presented. Finally, several new membrane applications with immense potential (e.g. fuel cells and olefin-paraffin separations) are discussed.  相似文献   

7.
表面引发聚合反应研究进展   总被引:1,自引:0,他引:1  
表面引发聚合反应作为一种新的聚合反应可广泛应用于固体基底的表面修饰与改性。结合分子自组装技术,几乎各种类型的聚合反应都有可能在固体基底表面进行。本文对表面引发聚合反应的研究进展进行了综述,对反应类型、实验方法、研究动向以及在合成聚合物刷、形成图案化聚合物薄膜等方面的应用与发展前景作了介绍与讨论。  相似文献   

8.
Chinese herbal medicine is gaining increasing popularity worldwide as an alternative approach to the development of pharmaceuticals in therapeutic applications. Chemical characterization and compositional analysis of Chinese medicines provide the necessary scientific basis for the discovery and development of new drugs of natural origin. Applications of mass spectrometry in the analysis of Chinese herbal medicines have been growing rapidly in recent years owing to the rapid technical advances and increasing availability of the instrumentation. This paper reviews the current status of how different mass spectrometric techniques are being used to support research studies of Chinese medicines. The focus is on crude herbal medicines and their derived products. The review is not meant to be exhaustive, but rather to provide a general overview of the various research activities in this rapidly expanding field. In the discussion of specific herbs, the emphasis is placed on ginseng and Danshen, two of the herbs for which active experimental work is on-going in the authors' laboratories. Other selected herbs will be discussed only briefly, aiming primarily to illustrate the current status of research in the area.  相似文献   

9.
In the era of nanoscience where all the devices and technologies are going to smaller and smaller in size with improved properties; catalysis is an important field of application. In this review article we are trying to summarize data reported in literature for application of nano sized catalyst in our daily life which are useful for human beings. Improvement in catalytic properties due size of catalyst reduced to nano scale is discussed here. Introductive points regarding nanoscience; their functional approaches; current research are also here.Main applications of nanocatalysts in water purification; fuel cell; energy storage; in composite solid rocket propellants; bio diesel production; in medicine; in dye; application of carbon nano tubes and several other point of application are discussed here in detail.  相似文献   

10.
取向碳纳米管制备方法及其应用进展*   总被引:1,自引:0,他引:1  
碳纳米管有广阔的应用前景,但很多应用是以碳纳米管定向的取向排列为前提.本文全面介绍了制备取向碳纳米管的各种方法和研究进展,综合阐述了各种制备方法的特点,并初步讨论了制备取向生长碳纳米管各种方法的机理.最后,对取向碳纳米管的应用进行了展望,提出了碳纳米管应用的新思路.  相似文献   

11.
The application of miniaturised separation techniques such as capillary LC, nano LC or capillary electrophoresis offers a number of advantages in terms of analytical performance, solvent consumption and the ability to analyse very small sample amounts. These features make them attractive for various bioanalytical tasks, in particular those related to the analysis of proteins and peptides. The skillful combination of such techniques with inductively coupled plasma mass spectrometry (ICP-MS) has recently permitted the design of combined analytical approaches utilising either elemental or molecule-specific detection techniques such as electrospray ionisation (ESI) or matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry in a highly complementary manner for, as an example, proteomics-orientated research (heteroatom-tagged proteomics). Such hybrid approaches are, in particular, providing promising new options for the fast screening of complex samples for specific metal-containing or—more generally speaking—heteroatom-containing biomolecules, as well as the accurate absolute quantification of biomolecules, which is still an unsolved problem in bioanalysis. Here, progress in as well as the potential and the special requirements of hyphenating miniaturised separation techniques with ICP-MS are reviewed and critically discussed. In addition, selected applications are highlighted to indicate current and possible future trends within this emerging area of research.  相似文献   

12.
Bottom‐up surface processing with well‐defined polymeric structures becomes increasingly important in many current technologies. Polymer brushes, that is, assemblies of macromolecules tethered at one end to a substrate, provide an exemplary system of materials capable of achieving such a goal. While the focus in the past decades has been mostly on their synthetic aspects and the in‐depth study of their interesting properties, from several years now the core area of research has already started to shift towards specific practical applications. Ample functional versatility and relative ease of preparation are special strengths of polymer brushes, lending them a strong interdisciplinary character. To this end, this work is entirely dedicated to bringing together the latest research on applications of polymer brushes in multiple research fields. The aim of this review are twofold: first, to give a critical discussion of the current status of development of application‐oriented research on polymer brushes, and second, to inform the reader as to what can be done with polymer brushes in multiple research fields. It is therefore hoped that the juxtaposition of perspectives from different disciplines in one place will stimulate and contribute to the ongoing process of cross‐fertilization that is driving this fascinating and emerging area of polymer science. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
Polymers are commonly used in industry because of their excellent bulk properties, such as strength and good resistance to chemicals. Their surface properties are for most application inadequate due to their low surface energy. A surface modification is often needed, and plasma surface modification is used with success the past decades. In the past few years, also plasma surface modification for biomedical polymers has been investigated. For biomedical polymers, the surface properties need to be altered to promote a good cell adhesion, growth and proliferation and to make them suitable for implants and tissue engineering scaffolds. This review gives an overview of the use of plasma surface modification of biomedical polymers and the influence on cell-material interactions. First, an introduction on cell-material interaction and on antibacterial and antifouling surfaces will be given. Also, different plasma modifying techniques used for polymer surface modification will be discussed. Then, an overview of literature on plasma surface modification of biopolymers and the resulting influence on cell-material interaction will be given. After an overview of plasma treatment for improved cell-material interaction, plasma polymerization and plasma grafting techniques will be discussed. Some more specialized applications will be also presented: the treatment of 3D scaffolds for tissue engineering and the spatial control of cell adhesion. Antibacterial and antifouling properties, obtained by plasma techniques, will be discussed. An overview of research dealing with antibacterial surfaces created by plasma techniques will be given, antifouling surfaces will be discussed, and how blood compatibility can be improved by preventing protein adhesion.  相似文献   

14.
《Comptes Rendus Chimie》2014,17(3):197-203
The application of strong electric fields in gases, water and organic liquids has been studied for several years, because of its importance in electrical transmission processes and its practical applications in biology, chemistry, and electrochemistry. More recently, electrical discharges have been investigated and are being developed in water for enhancing the extraction of biocompounds from different raw materials. This paper reviews the current status of research on the application of high voltage electrical discharges for promoting cell disruption in aqueous suspension of biological materials, with particular emphasis on application to biocompounds extraction.  相似文献   

15.
《中国化学快报》2020,31(4):937-946
Transition metal carbide,carbonitride and nitride MXenes,as the emerging two-dimensional(2D)nanomaterials,have aroused burgeoning research interest in a broad range of applications ranging from energy conversion to biomedicines attributing to their distinctive planar nanostructure,physiochemical properties and biological effects.They are featured with fascinating electronic,optical,magnetic,mechanical and thermal properties,which exert significant roles in biomedical applications of 2D MXenes.In this review,we briefly summarize the recent research progress of 2D MXenes and highlight their intrinsic chemistry in theranostic nanomedicines,focusing on the synthetic chemistry for MXenes construction,surface chemistry for surface engineering,physiochemical property for theranostic application and biological chemistry for biosafety evaluation.Furthermore,based on the current achieve ments on MXenes,their potential research directio n,critical challenges and future development in biomedicine are also discussed.It is highly expected that 2D MXene-based nanosystems would have a broad application prospect in theranostic biomedicine provided the current facing critical issues and challenges are adequately solved.  相似文献   

16.
Recent developments in the coupling of highly selective separation techniques such as capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) to element-specific and molecule-specific detectors, such as inductively-coupled plasma mass spectrometry (ICP-MS) and electrospray ionization-tandem mass spectrometry (ESI-MS/MS) for the characterization and quantification of metallothioneins (MTs) are critically reviewed and discussed. This review gives an update based on the literature over the last five years. The coupling of CE to ICP-MS is especially highlighted. As a result of progress in new interface technologies for CE-ICP-MS, research topics presented in the literature are changing from "the characterization of interfaces by metallothioneins" to the "characterization of metallothioneins by CE-ICP-MS". New applications of CE-ICP-MS to the analysis of MTs in real samples are summarized. The potential of the on-line isotope dilution technique for the quantification of MTs and for the determination of the stoichiometric composition of metalloprotein complexes is discussed. Furthermore, a selection of relevant papers dealing with HPLC-ICP-MS for MT analysis are summarized and compared to those dealing with CE-ICP-MS. In particular, the use of size-exclusion (SE)-HPLC as a preliminary separation step for metallothioneins in real samples prior to further chromatographic or electrophoretic separations is considered. Additionally, the application of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS) for the identification of metallothionein isoforms following electrophoretic or chromatographic separation is discussed.  相似文献   

17.
氮掺杂石墨烯的制备及其在化学储能中的研究进展   总被引:1,自引:0,他引:1  
石墨烯独特的二维空间结构使其具有优异的导电性能、力学性能以及超大的比表面积,被认为是颇具潜力的新型储能材料,是目前储能研究的热点之一。 但是石墨烯易团聚、表面光滑且呈惰性而不利于与其它材料的复合,导致其应用受到限制。 石墨烯掺氮可改变其电子结构,增加表面的活性位,从而提高其应用于储能器件时的电化学性能。 本文综述了近几年氮掺杂石墨烯的制备方法以及其在超级电容器、锂离子电池、锂空电池以及锂硫电池等化学储能领域中的应用,指出了目前氮掺杂石墨烯在制备和储能应用中关注的核心问题,并对氮掺杂石墨烯的发展前景进行了展望。  相似文献   

18.
Background information and current research activity dealing with tetrametal planar clusters containing two capping ligands is briefly reviewed. The synthetic methods leading to these clusters and their chemical properties are presented. The structure and bonding in lo some representative example is discussed. Their application as models of heterogeneous catalysts, homogeneous catalysts, and precursors to materials is highlighted. Such information can have important implications in the design of a more sophisticated tetranuclear cluster systems for improved process applications.  相似文献   

19.
本文介绍了高电压放电等离子体技术在生物质高分子聚合中的应用及机理,提出了把等离子体聚合技术应用于固体高分子生物质中,拓宽了等离子体聚合的应用范围及聚合产物的形态,讨论了在实现生物质等离子体聚合中,固体高分子原料聚合需要解决的问题,并就等离子体聚合在这方面的应用进展状况进行了扼要介绍,同时对其发展前景进行了展望。  相似文献   

20.
The emerging nanomaterial, quantum dots or QDs, offers numerous potential applications in the biological area. As cell labeling probes, QDs become now an alternative of existing organic fluorescent dyes and fluorescent proteins. In this short review, we cover typical and successful applications of QDs as fluorescent probes in cell labeling and genomic diagnosis. As a future important application, biomolecular detection at a single molecule level utilizing QDs is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号