首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Two isomeric compounds and , combining intramolecular charge transfer (ICT) and photoinduced electron transfer (PET) mechanisms together, were designed and used as logic gates with configurable multiple outputs; ten different logic functions (AND, NAND, OR, NOR, XNOR, INHIBIT, YES, NO, PASS 1 and PASS 0) were achieved by varying the inputs threshold or by altering the inputs; furthermore, half addition and half subtraction were performed within (or ); the concept demonstrated here may provide a strategy for constructing more integrated molecular level devices with multiple functions.  相似文献   

2.
A complete set (YES, NOT, AND, and ANDNOT) of molecular scale logic gates based on ligase deoxyribozymes was constructed. The activity of these gates was visualized through the formation of cascades with downstream phosphodieseterase YES gates, which performed fluorogenic cleavage.  相似文献   

3.
Integrated "ICT chromophore-receptor" systems show ion-induced shifts in their electronic absorption spectra. The wavelength of observation can be used to reversibly configure the system to any of the four logic operations permissible with a single input (YES, NOT, PASS 1, PASS 0), under conditions of ion input and transmittance output. We demonstrate these with dyes integrated into Tsien's calcium receptor, 1-2. Applying multiple ion inputs to 1-2 also allows us to perform two- or three-input OR or NOR operations. The weak fluorescence output of 1 also shows YES or NOT logic depending on how it is configured by excitation and emission wavelengths. Integrated "receptor(1)-ICT chromophore-receptor(2)" systems 3-5 selectively target two ions into the receptor terminals. The ion-induced transmittance output of 3-5 can also be configured via wavelength to illustrate several logic types including, most importantly, XOR. The opposite effects of the two ions on the energy of the chromophore excited state is responsible for this behaviour. INHIBIT and REVERSE IMPLICATION are two of the other logic types seen here. Integration of XOR logic with a preceding OR operation can be arranged by using three ion inputs. The fluorescence output of these systems can be configured via wavelength to display INHIBIT or NOR logic under two-input conditions. The superposition or multiplicity of logic gate configurations is an unusual consequence of the ability to simultaneously observe multiple wavelengths.  相似文献   

4.
DNA-based logic gates promote the development of molecular computing and show enormous potential in the fields of nanotechnology and biotechnology. Dumbbell oligonucleotides(DNA) with poly-thymine(poly-T) loops and a nicked random double strand have been demonstrated to be an efficient template for the formation of fluorescent copper nanoclusters(Cu NCs) in our previous work. Herein, a new platform technology is presented with which to construct molecular logic gates by employing Cu NCs probe as...  相似文献   

5.
以DNA为模板, 合成了具有荧光性质的银纳米簇(DNA-Ag NCs), 利用荧光光谱、 紫外光谱和红外光谱等手段对其进行了表征. 基于DNA-Ag NCs与离子相互作用时产生的荧光变化可实现对离子浓度的检测. 实验结果表明, 在最佳实验条件下, Ni 2+及Hg 2+的浓度与DNA-Ag NCs荧光强度呈线性关系; 并验证了该荧光探针用于检测自来水样品中汞离子和镍离子的实用性. 由于以DNA为模板的DNA-Ag NCs能够响应多种刺激, 如Ni 2+, S 2-, Hg 2+和pH等, 利用相应的荧光强度可构建多输入的DNA-Ag NCs逻辑门及其组合逻辑门. 当荧光输出强度(Ioutput)>初始荧光强度(Iorigin)时, 设定输出为1, 采用各种刺激及其组合作为输入, 构建了YES, INH和组合的NOR与INH逻辑门. 而只有当IoutputIorigin时定义为输出为1, 可建立NOT, NOR, 组合的IMP加上NOR与AND逻辑门. 基于DNA-Ag NCs可以构建响应多元输入的复杂逻辑门, 实现化学信息的转变和传输, 在构建新的分子器件方面有较大应用前景.  相似文献   

6.
It is recognized that biocomputing can provide intelligent solutions to complex biosensing projects. However, it remains challenging to transform biomolecular logic gates into convenient, portable, resettable and quantitative sensing systems for point‐of‐care (POC) diagnostics in a low‐resource setting. To overcome these limitations, the first design of biocomputing on personal glucose meters (PGMs) is reported, which utilizes glucose and the reduced form of nicotinamide adenine dinucleotide as signal outputs, DNAzymes and protein enzymes as building blocks, and demonstrates a general platform for installing logic‐gate responses (YES, NOT, INHIBIT, NOR, NAND, and OR) to a variety of biological species, such as cations (Na+), anions (citrate), organic metabolites (adenosine diphosphate and adenosine triphosphate) and enzymes (pyruvate kinase, alkaline phosphatase, and alcohol dehydrogenases). A concatenated logical gate platform that is resettable is also demonstrated. The system is highly modular and can be generally applied to POC diagnostics of many diseases, such as hyponatremia, hypernatremia, and hemolytic anemia. In addition to broadening the clinical applications of the PGM, the method reported opens a new avenue in biomolecular logic gates for the development of intelligent POC devices for on‐site applications.  相似文献   

7.
It is recognized that biocomputing can provide intelligent solutions to complex biosensing projects. However, it remains challenging to transform biomolecular logic gates into convenient, portable, resettable and quantitative sensing systems for point‐of‐care (POC) diagnostics in a low‐resource setting. To overcome these limitations, the first design of biocomputing on personal glucose meters (PGMs) is reported, which utilizes glucose and the reduced form of nicotinamide adenine dinucleotide as signal outputs, DNAzymes and protein enzymes as building blocks, and demonstrates a general platform for installing logic‐gate responses (YES, NOT, INHIBIT, NOR, NAND, and OR) to a variety of biological species, such as cations (Na+), anions (citrate), organic metabolites (adenosine diphosphate and adenosine triphosphate) and enzymes (pyruvate kinase, alkaline phosphatase, and alcohol dehydrogenases). A concatenated logical gate platform that is resettable is also demonstrated. The system is highly modular and can be generally applied to POC diagnostics of many diseases, such as hyponatremia, hypernatremia, and hemolytic anemia. In addition to broadening the clinical applications of the PGM, the method reported opens a new avenue in biomolecular logic gates for the development of intelligent POC devices for on‐site applications.  相似文献   

8.
在适当的条件下分子开关将输入的信息转换为输出信号,利用这一特点,可在分子体系根据二进位布尔逻辑规则实现信号转换。目前,用化学体系进行基本的布尔逻辑功能执行 (PASS、YES、NOT、AND、NAND、OR、NOR、XNOR和INH)都已成为可能。在此基础上,逻辑门的整合与编程,以及更进一步的复杂分子运算开始受到人们的关注。迄今为止,以高灵敏性的荧光输出信号为主,人们在分子水平上设计实现了多种复杂的逻辑电路,包括组合逻辑电路和时序逻辑电路等,并开始涉及信息处理的安全平台设计。本文主要介绍了近年来利用分子荧光开关体系模拟数字逻辑电路过程中所取得的最新进展,对分子逻辑电路研究的热点和问题进行了展望。  相似文献   

9.
Modern computer processors are based on semiconductor logic gates connected to each other in complex circuits. This study contributes to the development of a new class of connectable logic gates made of DNA in which the transfer of oligonucleotide fragments as input/output signals occurs upon hybridization of DNA sequences. The DNA strands responsible for a logic function form associates containing immobile DNA four‐way junction structures when the signal is high and dissociate into separate strands when the signal is low. A basic set of logic gates (NOT, AND, and OR) was designed. Two NOT gates, two AND gates, and an OR gate were connected in a network that corresponds to an XOR logic function. The design of the logic gates presented here may contribute to the development of the first biocompatible molecular computer.  相似文献   

10.
Organic molecular devices for information processing applications are highly useful building blocks for constructing molecular‐level machines. The development of “intelligent” molecules capable of performing logic operations would enable molecular‐level devices and machines to be created. We designed a series of 2,5‐diaryl‐1,3,4‐oxadiazoles bearing a 2‐(para‐substituted)phenyl and a 5‐(o‐pyridyl) group (substituent X=NMe2, OEt, Me, H, and Cl; 1 a – e ) that form a bidentate chelating environment for metal ions. These compounds showed fluorescence response profiles varying in both emission intensity and wavelength toward the tested metal ions Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, and Pb2+ and the responses were dependent on the substituent X, with those of 1 d being the most substantial. The 1,3,4‐oxadiazole O or N atom and pyridine N atom were identified as metal‐chelating sites. The fluorescence responses of 1 d upon metal chelation were employed for developing truth tables for OR, NOR, INHIBIT, and EnNOR logic gates as well as “ON‐OFF‐ON” and “OFF‐ON‐OFF” fluorescent switches in a single 1,3,4‐oxadiazole molecular system.  相似文献   

11.
Elementary, Dr. Watson! A combination of YES and OR logic gates was applied to differentiate between DNA sequences of wild-type and rifampin-resistant (Rif(r) ) Mycobacterium tuberculosis (Mtb) in a multiplex real-time fluorescent assay.  相似文献   

12.
A simple, versatile, and label‐free DNA computing strategy was designed by using toehold‐mediated strand displacement and stem‐loop probes. A full set of logic gates (YES, NOT, OR, NAND, AND, INHIBIT, NOR, XOR, XNOR) and a two‐layer logic cascade were constructed. The probes contain a G‐quadruplex domain, which was blocked or unfolded through inputs initiating strand displacement and the obviously distinguishable light‐up fluorescent signal of G‐quadruplex/NMM complex was used as the output readout. The inputs are the disease‐specific nucleotide sequences with potential for clinic diagnosis. The developed versatile computing system based on our label‐free and modular strategy might be adapted in multi‐target diagnosis through DNA hybridization and aptamer‐target interaction.  相似文献   

13.
A new HfIV‐based metal‐organic framework with UiO‐66 topology was synthesized via a one‐step solvothermal method by using 3‐methyl‐4‐phenylthieno[2,3‐b]thiophene‐2,5‐dicarboxylic acid (H2MPTDC) as a ligand. The MOF material showed a high stability in a broad pH range (from pH 2 to pH 12) in an aqueous medium. The presence of hydrophobic methyl and phenyl substituents in the carboxylic acid ligand and strong Hf?O bond play crucial roles in its stability. The new MOF material was systematically characterized by various techniques such as XRPD, N2 sorption, thermogravimetric analyses and FT‐IR spectroscopy. The photophysical properties of the MOF material were also examined by steady‐state and time‐resolved fluorescence studies. It was observed that the blue fluorescence of the MOF material was selectively quenched in the presence of Fe3+ ion in pure aqueous medium. A mechanistic study disclosed that quenching occurs via a strong inner filter effect (IFE) arising from Fe3+ ion in aqueous medium. Interestingly, the fluorescence of the MOF material can be recovered by elimination of the IFE of Fe3+ ion via reduction of Fe3+ ion by ascorbic acid (AA). Based on the fluorescence recovery by AA, a MOF based on‐off‐on probe was developed for the sensing of Fe3+ ion and AA in aqueous medium. Inspired by this reversible sensing event, we demonstrate basic (NOT, OR, YES, INHIBIT and IMP) and higher integrated logic operations utilizing this fluorescent MOF. This MOF‐based logic systems could be potentially used for next‐generation logic‐gate based analytical applications as well as for the detection and discrimination of targeted molecules in various complex domains.  相似文献   

14.
DNA-based computers can potentially analyze complex sets of biological markers, thereby advancing diagnostics and the treatment of diseases. Despite extensive efforts, DNA processors have not yet been developed due, in part, to limitations in the ability to integrate available logic gates into circuits. We have designed a NAND gate, which is one of the functionally complete set of logic connectives. The gate's design avoids stem-loop-folded DNA fragments, and is capable of reusable operations in RNase H-containing buffer. The output of the gate can be translated into RNA-cleaving activity or a fluorescent signal produced either by a deoxyribozyme or a molecular beacon probe. Furthermore, three NAND-gate-forming DNA strands were crosslinked by click chemistry and purified in a simple procedure that allowed ≈1013 gates to be manufactured in 16 h, with a hands-on time of about 30 min. Two NAND gates can be joined into one association that performs a new logic function simply by adding a DNA linker strand. Approaches developed in this work could contribute to the development of biocompatible DNA logic circuits for biotechnological and medical applications.  相似文献   

15.
Designing molecular logic gates to operate programmably for molecular diagnostics in molecular computing still remains challenging. Here, we designed a novel linear DNA logic gates for microRNA analysis based on strand displacement and fluorescence resonance energy transfer (FRET). Two labeled strands closed each other produce to FRET through hybridization with a complementary strand to form a basic work unit of logic gate. Two indicators of heart failure (microRNA-195 and microRNA-21) were selected as the logic inputs and the fluorescence mode was used as the logic output. We have demonstrated that the molecular logic gate mechanism worked well with the construction of YES and AND gates.  相似文献   

16.
The logic system is obtained by using a series of double‐stranded (ds) DNA templates with mismatched base pairs (T–T or C–C) and ion‐modulated exonuclease III (Exo III) activity, in which the Exo III cofactors, Hg2+ and Ag+ ions, are used as inputs for the activation of the respective scission of Exo III based on the formation of T–Hg2+–T or C–Ag+–C base pairs. Additionally, two kinds of signal probes are utilized to transduce the logic operations. One is the two split G‐rich DNA strands that are used to design the OR, AND, INHIBIT, and XOR gates, whereas the other is the self‐assembled split G‐quadruplex structure to construct NOR, NAND, IMPLICATION, and XNOR operations based on DNA hybridization and strand displacement. In the presence of hemin, the split G‐quadruplex biocatalyzes the formation of a colored product, which is an output signal for the different logic gates. Thus, we have constructed a complete set of colorimetric DNA logic gates based on the Exo III and split G‐quadruplex for the first time. In addition, we are able to effortlessly recognize the logic output signals by the naked eye and their simplicity and cost‐effective design is the most apparent feature for the logic gates developed in this work.  相似文献   

17.
Deoxyribozyme-based logic gates   总被引:14,自引:0,他引:14  
We report herein a set of deoxyribozyme-based logic gates capable of generating any Boolean function. We construct basic NOT and AND gates, followed by the more complex XOR gate. These gates were constructed through a modular design that combines molecular beacon stem-loops with hammerhead-type deoxyribozymes. Importantly, as the gates have oligonucleotides as both inputs and output, they open the possibility of communication between various computation elements in solution. The operation of these gates is conveniently connected to a fluorescent readout.  相似文献   

18.
We explore how the globality of quantum logic operations is ensured in the context of optimal control theory when qubits are encoded in vibrational eigenstates of different normal modes and specially shaped laser fields act as quantum logic operations. In a two-qubit model system, transition mechanisms for optimized laser fields generating single qubit flips, local NOT and global NOT and controlled-NOT (CNOT) gates are investigated and compared. We evaluate the participation of vibrational eigenstates beyond the qubit basis in the global gate mechanisms and how different features of CNOT and NOT gates relate to the characteristics of the vibrational manifold. When a non-qubit normal mode interacting via anharmonic resonances is introduced, neither the global gate mechanisms nor the optimized laser fields show a significant increase in complexity. Similar features of the global quantum gates in both model systems indicate a generality of the deduced principles. Finally, a primary concept for a realization of global quantum gates in an actual experiment referring to state-of-the-art techniques is presented. The possible reconstruction of optimized laser fields with sequences of simple Gaussian subpulses is demonstrated and some critical parameters are deduced.  相似文献   

19.
Based on the chemical‐sensitive fluorescence emission behaviors of the molecular switch 4‐bromo‐5‐methoxy‐2‐(2‐pyridyl)thiazole ( 2‐BMPT ), the communication of logic information between two functional units has been realized. With the rational control of the protonation and coordination reaction of 2‐BMPT , an upstream switching unit (a 1:2 demultiplexer) and two downstream data‐processing units are involved and interconnected in the communication. The two output states of the 1:2 demultiplexer serve as the initial input states of the two parallel downstream data‐processing units, which execute the information communication between the two circuit layers. Furthermore, in the parallel data‐processing layer, the logic gates of INHIBIT and YES accomplish their specific logic functions. Therefore, a molecular cascade circuit composed of an upstream switch and two downstream processing units has been constructed based on the chemical‐modulated fluorescence properties of 2‐BMPT .  相似文献   

20.
A battery of logic gates, “YES”, “AND” and “OR”, are constructed using magnetic beads (MBs) modified by DNA which consists of a substrate strand (S) and a signal strand on which the logic operates. Inputs stemming from micro-RNA (which represent three cancer biomarkers) take the place of signal DNA. The released signal strand self-assembles into the hemin-G-quadruplex complex (DNAzyme) that catalyzes a blue-green dye (ABTS+) from the precursor ABTS. This dye (quantified at a wavelength of 414 nm) represents the output signal for the various logic gates. The method allows quantitative detection of microRNA of three kinds of logic gates in the range of 5 nM–500 nM with detection limits of 3.8 nM, 4.9 nM, 5.4 nM. Boolean logic circuitry is also achieved following the principles of multilevel strand displacement. Based on strand displacement and magnetic separation, this work demonstrates the possibility of designing a logic system using micro-RNA in live cell lysate as inputs, and its potential application in DNA computation and cancer diagnosis.
Graphical abstract Schematic representation of a battery of logic gates and the Boolean logic circuitry based on strand displacement and magnetic separation responding to multiple microRNA in cancer cell lysate.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号