首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The solubility isotherm of the system Lu2O3–SeO2–H2O was studied at 100°C. The compounds of the three-component system were identified by Schreinemakers’ method and chemical, derivatograph and X-ray phase analyses after separation in the pure state: Lu2(SeO3)3·4H2O and LuH(SeO3)2·2H2O.  相似文献   

2.
Summary.  Double rare earth monomethylammonium selenates of the general formula CH3NH3 Ln (SeO4)2·5H2O (Ln = Sm, Eu, Gd, Tb, Ho, Y) were synthesized and characterized using X-ray powder diffraction and infrared spectroscopy. The thermal decomposition of the compounds were investigated using TG, DTG, and DTA techniques. Corresponding author. E-mail: vrajgaonkar@yahoo.com, vrajgaonkar@mail.mu.ac.in Received November 5, 2001. Accepted (revised) March 6, 2002  相似文献   

3.
The solubility of NiSeO3–SeO2–H2O system in the temperature region 298–573 K was studied. The compounds of the three-component system were identified by the Schreinemakers’ method. The phase diagram of nickel(II) selenites was drawn and the crystallization fields for the different phases were determined. Depending on the conditions for hydrothermal synthesis, NiSeO3·2H2O, α-NiSeO3·1/3H2O, β-NiSeO3·1/3H2O, NiSeO3 and NiSe2O5 were obtained. The different phases were proved and characterized by chemical, powder X-ray diffraction and thermal analyses as well as IR spectroscopy.  相似文献   

4.
Summary.  Unpromoted cobalt molybdate was prepared from Co(NO3)2·6H2O and (NH4)6Mo7O24·4H2O, then calcined between 350 and 600°C for 5 h. K2O (10 w%), as a promoter, was added to the calcined sample at 350°C from two different sources (i.e. KOH and KNO3) and was subjected to further calcination at 350°C for 5 h. The catalytic activity of unpromoted catalysts towards the vapour phase decomposition of CH3COOH was greatly influenced by the increase in the calcination temperature. This is attributed to the diminution of both S BET and their dual acidic–basic characters. The promoted sample from the KOH source was found to be the most active of the catalysts studied. This is due to its high population of both acidic–basic surface sites and the formation of two new phases. XRD and FTIR analyses of the used catalysts, after the decomposition reaction of acetic acid, showed a remarkable change in its structure compared with the parent samples. E-mail: shalawy99@yahoo.com Received May 8, 2002; accepted (revised) July 9, 2002  相似文献   

5.
Summary.  The solubilities in the systems Rb2SeO4=ZnSeO4=H2O and Cs2SeO4=ZnSeO4=H2O at 25°C were studied by the method of isothermal decrease of supersaturation. Comparatively wide crystallization fields of the double salts Rb2Zn(SeO4)2ċ6H2O and Cs2Zn(SeO4)2ċ6H2O are observed in the solubility diagrams. The double salts form monoclinic crystals which are isostructural with those of the corresponding rubidium and cesium zinc sulfate hexahydrates. TG and TDA measurements indicate that the double salts lose their crystallization water in one step in the temperature intervals of 50–160°C (rubidium salt) and 70–150°C (cesium salt). Received March 14, 2000. Accepted (revised) June 5, 2000  相似文献   

6.
The solid-state coordination reaction: Nd(NO3)3·6H2O(s)+4Ala(s) → Nd(Ala)4(NO3)3·H2O(s)+5H2O(l) and Er(NO3)3·6H2O(s)+4Ala(s) → Er(Ala)4(NO3)3·H2O(s)+5H2O(l) have been studied by classical solution calorimetry. The molar dissolution enthalpies of the reactants and the products in 2 mol L–1 HCl solvent of these two solid-solid coordination reactions have been measured using a calorimeter. From the results and other auxiliary quantities, the standard molar formation enthalpies of [Nd(Ala)4(NO3)3·H2O, s, 298.2 K] and[Er(Ala)4(NO3)3·H2O, s,298.2 K] at 298.2 K have been determined to be Δf H m 0 [Nd(Ala)4(NO3)3·H2O,s, 298.2 K]=–3867.2 kJ mol–1, and Δf H m 0 [Er(Ala)4(NO3)3·H2O, s, 298.2 K]=–3821.5 kJ mol–1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Summary.  The diagram of the ternary system Mg2+/Cl, SO4 2−–H2O was established at 15°C by means of analytical and conductimetric measurements. Three compounds were found in this diagram, which are MgSO4·6H2O, MgSO4·7H2O, and MgCl2·6H2O. The solubility field of MgSO4·7H2O is important whereas those of MgSO4·6H2O and MgCl2·6H2O are small. The compositions (mass-%) of the two invariant points determined by the two methods are: MgSO4:MgCl2=2.73:33.80 and MgSO4: MgCl2=3.38:28.91. Both the measured and the calculated isotherm at 15°C have been used for modelling of the diagram Mg2+/Cl, SO4 2−–H2O between 0 and 35°C. The polythermal invariant point was approximately located between 15 and 10°C.  Corresponding author. E-mail: ariguib@planet.tn Received October 16, 2002; accepted (revised) December 3, 2002 Published online April 24, 2003 RID="a" ID="a" Dedicated to Prof. Dr. Heinz Gamsj?ger on the occasion of his 70th birthday  相似文献   

8.
The solubility of the system CdO-SeO2-H2O was studied at 25 and 100°C. The fields of crystallization of α-CdSeO3, 3CdSeO3·H2SeO3 and CdSeO3·SeO2 were established at 25°C. At 100°C crystallize α-CdSeO3, 3CdSeO3·SeO2, 2CdSeO3·SeO2 and CdSeO3·SeO2. The compounds obtained were identified by means of chemical, X-ray and crystal-optical analysis. The mechanism of thermal dissociation of α-CdSeO3, 3CdSeO3·H2SeO3 and CdSeO3·SeO2 was studied. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
The vanadium(V) complexes K[VO2(SeO4)(H2O)] and K[VO2(SeO4)(H2O)2] · H2O were synthesized using original procedures; their physicochemical properties were studied, and the crystal structure was determined on the basis of X-ray diffraction and neutron diffraction data. The structure of K[VO2(SeO4)(H2O)2] · H2O is composed of VO6 octahedra connected to form infinite chains by bridging SeO4 tetrahedra. Each VO6 tetrahedron has short terminal V-O bonds forming the bent dioxovanadium group VO2+ The unit cell parameters of K[VO2(SeO4)(H2O)2] · H2O are a = 6.4045(1) ?, b = 9.9721(2) ?, c = 6.6104(1) ?, β = 107.183(1)°, V = 403.34 ?3, Z = 2, monoclinic system, space group P21. The complex K[VO2(SeO4)(H2O)] forms a two-dimensional layered structure composed of highly distorted VO6 octahedra having two short terminal V-O bonds and SeO4 groups coordinated simultaneously by three vanadium atoms. This compound crystallizes in the monoclinic system (space group P21/c): a = 7.3783(1) ?, b = 10.5550(2) ?, c = 10.3460(2) ?, β = 131.625(1)°, V = 602.894(5) ?3, Z= 4. The vibrational spectra of the studied compounds are fully consistent with their structural features.  相似文献   

10.
The thermal dehydration-decomposition of Ln2(SeO4)3·nH2O (wheren=12 forLn=Pr, Nd andn=8 forLn=Sm) and PrxLn2−x(SeO4)3·nH2O (wheren=12 forx=1.0 andLn=Nd;n=8 forx=0.2 and 1.0 in case ofLn=Sm) have been reported.
Zusammenfassung Die thermische Dehydratation-Zersetzung von Ln2(SeO4)3·nH2O (mitn=12 fürLn=Pr, Nd undn=8 fürLn=Sm) und PrxLn2−x(SeO4)3·nH2O (mitn=12 fürx=1.0 undLn=Nd;n=8 fürx=0.2 und 1.0 in Falle vonLn=Sm) wurde beschrieben.
  相似文献   

11.
The selenites, Na2Be3(SeO3)4 · H2O and Cs2[Mg(H2O)6]3(SeO3)4, were synthesized under hydrothermal conditions. The crystal structures of Na2Be3(SeO3)4 · H2O and Cs2[Mg(H2O)6]3(SeO3)4 were determined by single‐crystal X‐ray diffractions. Na2Be3(SeO3)4 · H2O crystallizes in the triclinic space group P1 (no. 2) with unit cell parameters a = 4.8493(9), b = 12.013(2), c = 12.077(2) Å, and Z = 2, whereas Cs2[Mg(H2O)6]3(SeO3)4 crystallizes in the monoclinic space group C2/m (no. 12) with lattice cell parameters a = 12.596(6), b = 7.297(4), c = 16.914(8) Å, and Z = 2. Na2Be3(SeO3)4 · H2O features a three‐dimensional open framework structure formed by BeO4 tetrahedra and SeO3 trigonal pyramids. Na cations and H2O molecules are located in different tunnels. Cs2[Mg(H2O)6]3(SeO3)4 has a structure composed of isolated [Mg(H2O)6] octahedra and SeO3 trigonal pyramids interacted by hydrogen bonds, and Cs cations are resided in‐between. Both compounds were characterized by thermogravimetric analysis and FT‐IR spectroscopy.  相似文献   

12.
 The solubilities in the systems Rb2SeO4=ZnSeO4=H2O and Cs2SeO4=ZnSeO4=H2O at 25°C were studied by the method of isothermal decrease of supersaturation. Comparatively wide crystallization fields of the double salts Rb2Zn(SeO4)2ċ6H2O and Cs2Zn(SeO4)2ċ6H2O are observed in the solubility diagrams. The double salts form monoclinic crystals which are isostructural with those of the corresponding rubidium and cesium zinc sulfate hexahydrates. TG and TDA measurements indicate that the double salts lose their crystallization water in one step in the temperature intervals of 50–160°C (rubidium salt) and 70–150°C (cesium salt).  相似文献   

13.
Two new mono- and dinuclear Cu(II) complexes, namely [CuL1]·0.5H2O (1) and [(Cu2(L2)2)(DMF)]·0.5DMF (2) (H2L1 = 1,2-bis{[(Z)-(3-methyl-5-oxo-1-phenyl-1H-pyrazolidin-4(4H)-yl)(phenyl)]methylene-aminooxy}ethane; H2L2 = 1,3-bis{[(Z)-(3-methyl-5-oxo-1-phenyl-1H-pyrazolidin-4(4H)-yl)(phenyl)] methyleneaminooxy}propane), have been synthesized and characterized by X-ray crystallography. The unit cell of complex 1 contains two crystallographically independent but chemically identical [CuL1] molecules and one crystalline water molecule, showing a slightly distorted square-planar coordination geometry and forming a wave-like pattern running along the a-axis via hydrogen bonding and π···π stacking interactions. Complex 2 has a dinuclear structure, comprising two Cu(II) atoms, two completely deprotonated phenolate bisoxime (L2)2− moieties (in the form of enol), and both coordinated and hemi-crystalline DMF molecules. Complex 2 has square-planar and square-pyramidal geometries around the two copper centers, whose basic coordination planes are almost perpendicular and form an infinite three-dimensional supramolecular network structure involving intermolecular C–H···N, C–H···O, and C–H···π(Ph) hydrogen bonding and π···π stacking interactions of neighboring pyrazole rings.  相似文献   

14.
Summary.  Calcium sulfate occurs in nature in form of three different minerals distinguished by the degree of hydration: gypsum (CaSO4·2H2O), hemihydrate (CaSO4·0.5H2O) and anhydrite (CaSO4). On the one hand the conversion of these phases into each other takes place in nature and on the other hand it represents the basis of gypsum-based building materials. The present paper reviews available phase diagram and crystallization kinetics information on the formation of calcium sulfate phases, including CaSO4-based double salts and solid solutions. Uncertainties in the solubility diagram CaSO4–H2O due to slow crystallization kinetics particularly of anhydrite cause uncertainties in the stable branch of crystallization. Despite several attempts to fix the transition temperatures of gypsum–anhydrite and gypsum–hemihydrate by especially designed experiments or thermodynamic data analysis, they still vary within a range from 42–60°C and 80–110°C. Electrolyte solutions decrease the transition temperatures in dependence on water activity. Dry or wet dehydration of gypsum yields hemihydrates (α-, β-) with different thermal and re-hydration behaviour, the reason of which is still unclear. However, crystal morphology has a strong influence. Gypsum forms solid solutions by incorporating the ions HPO4 2−, HAsO4 2−, SeO4 2−, CrO4 2−, as well as ion combinations Na+(H2PO4) and Ln3+(PO4)3−. The channel structure of calcium sulfate hemihydrate allows for more flexible ion substitutions. Its ion substituted phases and certain double salts of calcium sulfate seem to play an important role as intermediates in the conversion kinetics of gypsum into anhydrite or other anhydrous double salts in aqueous solutions. The same is true for the opposite process of anhydrite hydration to gypsum. Knowledge about stability ranges (temperature, composition) of double salts with alkaline and alkaline earth sulfates (esp. Na2SO4, K2SO4, MgSO4, SrSO4) under anhydrous and aqueous conditions is still very incomplete, despite some progress made for the systems Na2SO4–CaSO4 and K2SO4–CaSO4–H2O. Corresponding author. E-mail: daniela.freyer@chemie.tu-freiberg.de Received December 17, 2002; accepted January 10, 2003 Published online April 3, 2003  相似文献   

15.
Magnetic susceptibility investigations have been carried out on a family of the tetra-transition-metal sandwiched Weakley-type germanotungstates Na11H[Co4(H2O)2(α-GeW9O34)2]·31H2O (1), (C6N2H18)4[Co(H2O)6]H2[Co4(H2O)2(α-GeW9O34)2]·5.5H2O (2) and Na(H2O)2(C6N2H18)4.75H1.5[Ni4(H2O)2(α-GeW9O34)2]·1.5H2O (3) with the intention of studying the magnetic exchange properties of the rhomb-like four transition-metal ions in the central belt. The Co–Co and Ni–Ni ferromagnetic exchange interactions are dominant in the rhomb-like M4O16 units in 13. Furthermore, magnetic susceptibility measurements also reveal that the magnetic coupling constant J is a sensitive parameter that is closely realted to the M–O–M angles and M···M separations in the rhomb-like magnetic core. Variable-temperature ac susceptibilities exhibit that magnetic properties of 2 and 3 are related to the spin glassy behaviors.  相似文献   

16.
Low-temperature heat capacities of a solid complex Zn(Val)SO4·H2O(s) were measured by a precision automated adiabatic calorimeter over the temperature range between 78 and 373 K. The initial dehydration temperature of the coordination compound was determined to be, T D=327.05 K, by analysis of the heat-capacity curve. The experimental values of molar heat capacities were fitted to a polynomial equation of heat capacities (C p,m) with the reduced temperatures (x), [x=f (T)], by least square method. The polynomial fitted values of the molar heat capacities and fundamental thermodynamic functions of the complex relative to the standard reference temperature 298.15 K were given with the interval of 5 K. Enthalpies of dissolution of the [ZnSO4·7H2O(s)+Val(s)] (Δsol H m,l 0) and the Zn(Val)SO4·H2O(s) (Δsol H m,2 0) in 100.00 mL of 2 mol dm–3 HCl(aq) at T=298.15 K were determined to be, Δsol H m,l 0=(94.588±0.025) kJ mol–1 and Δsol H m,2 0=–(46.118±0.055) kJ mol–1, by means of a homemade isoperibol solution–reaction calorimeter. The standard molar enthalpy of formation of the compound was determined as: Δf H m 0 (Zn(Val)SO4·H2O(s), 298.15 K)=–(1850.97±1.92) kJ mol–1, from the enthalpies of dissolution and other auxiliary thermodynamic data through a Hess thermochemical cycle. Furthermore, the reliability of the Hess thermochemical cycle was verified by comparing UV/Vis spectra and the refractive indexes of solution A (from dissolution of the [ZnSO4·7H2O(s)+Val(s)] mixture in 2 mol dm–3 hydrochloric acid) and solution A’ (from dissolution of the complex Zn(Val)SO4·H2O(s) in 2 mol dm–3 hydrochloric acid).  相似文献   

17.
 Double rare earth monomethylammonium selenates of the general formula CH3NH3 Ln (SeO4)2·5H2O (Ln = Sm, Eu, Gd, Tb, Ho, Y) were synthesized and characterized using X-ray powder diffraction and infrared spectroscopy. The thermal decomposition of the compounds were investigated using TG, DTG, and DTA techniques.  相似文献   

18.
Pale pink crystals of Nd2(SeO3)2(SeO4) · 2H2O were synthesized under hydrothermal conditions from H2SeO3 and Nd2O3 at about 200 °C. X‐ray diffraction on powder and single‐crystals revealed that the compound crystallizes with the monoclinic space group C 2/c (a = 12.276(1) Å, b = 7.0783(5) Å, c = 13.329(1) Å, β = 104.276(7)°). The crystal structure of Nd2(SeO3)2(SeO4) · 2H2O is an ordered variant of the corresponding erbium compound. Eight oxygen atoms coordinate the NdIII atom in the shape of a bi‐capped trigonal prism. The oxygen atoms are part of pyramidal (SeIVO3)2? groups, (SeVIO4)2? tetrahedra and water molecules. The [NdO8] polyhedra share edges to form chains oriented along [010]. The selenate ions link these chains into layers parallel to (001). The layers are interconnected by the selenite ions into a three‐dimensional framework. The dehydration of Nd2(SeO3)2(SeO4) · 2H2O starts at 260 °C. The thermal decomposition into Nd2SeO5, SeO2 and O2 at 680 °C is followed by further loss of SeO2 leaving cubic Nd2O3.  相似文献   

19.
The complexes of 4-chloro-2-methoxybenzoic acid anion with Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were obtained as polycrystalline solids with general formula M(C8H6ClO3)2·nH2O and colours typical for M(II) ions (Mn – slightly pink, Co – pink, Ni – slightly green, Cu – turquoise and Zn – white). The results of elemental, thermal and spectral analyses suggest that compounds of Mn(II), Cu(II) and Zn(II) are tetrahydrates whereas those of Co(II) and Ni(II) are pentahydrates. The carboxylate groups in these complexes are monodentate. The hydrates of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) heated in air to 1273 K are dehydrated in one step in the range of 323–411 K and form anhydrous salts which next in the range of 433–1212 K are decomposed to the following oxides: Mn3O4, CoO, NiO and ZnO. The final products of decomposition of Cu(II) complex are CuO and Cu. The solubility value in water at 293 K for all complexes is in the order of 10–3 mol dm–3. The plots of χM vs. temperature of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) follow the Curie–Weiss law. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in these complexes were determined in the range of 76−303 K and they change from: 5.88–6.04 μB for Mn(C8H6ClO3)2·4H2O, 3.96–4.75 μB for Co(C8H6ClO3)2·5H2O, 2.32–3.02 μB for Ni(C8H6ClO3)2·5H2O and 1.77–1.94 μB for Cu(C8H6ClO3)2·4H2O.  相似文献   

20.
Solubility product (Lu(OH)3(s)⇆Lu3++3OH) and first hydrolysis (Lu3++H2O⇆Lu(OH)2++H+) constants were determined for an initial lutetium concentration range from 3.72·10−5 mol·dm−3 to 2.09·10−3 mol·dm−3. Measurements were made in 2 mol·dm−3 NaClO4 ionic strength, under CO2-free conditions and temperature was controlled at 303 K. Solubility diagrams (pLuaq vs. pC H) were determined by means of a radiochemical method using 177Lu. The pC H for the beginning of precipitation and solubility product constant were determined from these diagrams and both the first hydrolysis and solubility product constants were calculated by fitting the diagrams to the solubility equation. The pC H values of precipitation increases inversely to [Lu3+]initial and the values for the first hydrolysis and solubility product constants were log10 β* Lu,H = −7.92±0.07 and log10 K*sp,Lu(OH)3 = −23.37±0.14. Individual solubility values for pC H range between the beginning of precipitation and 8.5 were S Lu3+ = 3.5·10−7 mol·dm−3, S Lu(OH)2+ = 6.2·10−7 mol·dm−3, and then total solubility was 9.7·10−7 mol·dm−3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号