首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the discovery of imatinib, the first tyrosine kinase inhibitor, in 2001, targeted therapy has become mainstream of cancer therapeutics. Despite the advantages in efficacy and low side effects compared with conventional chemotherapy, the success of the targeted anticancer drugs is still limited by the drug resistance which happens due to the fact that the development of cancer is stimulated by several stimuli and therefore, defeating cancer may occur upon the inhibition of several targets. However, coadministration of multiple drugs always lead to many disadvantages including increased toxicity and less patient compliance. Therefore, the aim of research is to develop anticancer agents with multi-target action based on the modification of the chemical structure of sunitinib, a well-known multi-kinase inhibitor. A series of fifteen compounds comprising pyrrolo[2,3-d]pyrimidine and hydrazone have been designed and successfully synthesized. Among the synthesized compounds, compounds 6f, 6l and 6n inhibited the enzymatic activity of EGFR, Her2, VEGFR-2 and CDK2 kinase enzymes similar to sunitinib and the reference protein kinase inhibitors. Interestingly, remarkable results were revealed by compounds 6j and 6c that demonstrated selective VEGFR-2 inhibition activities and compound 6i that exhibited selective dual inhibition of Her2/VEGFR-2 enzymes. Further analysis revealed that compounds 6f and 6n suppressed cell cycle progression of HepG2 cells and induced early and late apoptosis. Moreover, those two compounds triggered a significant elevation in caspase 3 and Bax proapoptotic proteins and a notable reduction in Bcl-2 anti-apoptotic protein. Finally, molecular docking studies were conducted to predict the possible binding interactions of 6f and 6n with CDK2 and 6f, 6n, 6j and 6c with VEGFR-2.  相似文献   

2.
Relatively high molecular weight S‐BINOLs with substituted functional groups were synthesized, and structures were elucidated by FTIR, 1H nuclear magnetic resonance, 13C nuclear magnetic resonance, and HRMS. As a preliminary step, the compounds were docked into the active site of phosphoinositide3‐kinase (PI3Kinase) (Protein Data Bank ID: 2IUG) that is a crucial regulator of apoptosis or programmed cell death. To ensure the PI3Kinase inhibition, because it was predicted as the most suitable bioactivity of these compounds, a competitive ELISA PI3Kinase inhibition study was carried out. Compounds 3 , 4a , 4b , and 6 were assessed for cytotoxicity/antiproliferative effects on MCF‐7 (breast cancer) and HCT116 (colon cancer) cell lines. In the docking studies, excellent binding affinities of 3 , 4a , 4b , and 6 (−11.36, −14.52, −14.86, and −21.76 kcal/mol, respectively) and the inhibitory constants (ki) (4.75 nM, 81.64 pM, 78.23 pM, and 14.24 pM, respectively) encouraged us to carry out anticancer studies further. Excellent inhibitory values were obtained in the range of 82–90% relative activity and IC50 range of 5–12 nM. In the cytotoxicity, the relative inhibition activity was remarkably found high in MCF‐7 cell lines as 89.14% ( 6 ), 82.18% ( 4b ), 80.46% ( 3 ), and 74.78% ( 4a ) with the IC50 range of 0.02–0.18 μM. No compounds were found inactive for the proposed activity in this study. The Structure Activity Relationship studies prove that compounds 3 , 4a , 4b , and 6 are specific PI3Kinase inhibitors with the competence to cure breast cancers.  相似文献   

3.
Wang  Ying  Fang  Simeng  Zhao  Guisen  Wang  Weihong  Zhao  Zhongxi 《Chromatographia》2016,79(11):675-684

The vascular endothelial growth factor receptor-2 (VEGFR-2) in some tumor cells is a significant target for drug discovery. In this work, a modified model of VEGFR-2 cell membrane stationary phase (CMSP) was prepared by immobilizing U251 cell membrane onto the surface of chitosan-silica (CTS-SiO2) hybrid carrier. The surface and chromatographic characteristics of VEGFR-2 CMSP were studied. We have developed modified VEGFR-2 cell membrane chromatography for screening drugs and sunitinib malate was used as a positive control. The interaction between the new compounds and membrane receptor was determined by the capacity factors (kʹ). The in vitro cytotoxicity of 10 new compounds on U251 cell viability was determined by MTT test separately to verify the potential pharmacological activity. The modified VEGFR-2 cell membrane chromatographic system demonstrated fast and effective characteristics for screening leading compounds.

  相似文献   

4.
Stimulation of the PI3K/Akt/mTOR pathway, which controls cell proliferation and growth, is often observed in cancer cell. Inhibiting both PI3K and mTOR in this pathway can switch off Akt activation and hence, plays a powerful role for modulating this pathway. PKI-587, a drug containing the structure of morpholino-triazines, shows a dual and nano-molar inhibition activity and is currently in clinical trial. To provide an insight into the mechanism of this dual inhibition, pharmacophore and QSAR models were developed in this work using compounds based on the morpholino-triazines scaffold, followed by a docking study. Pharmacophore model suggested the mechanism of the inhibition of PI3Kα and mTOR by the compounds were mostly the same, which was supported by the docking study showing similar docking modes. The analysis also suggested the importance of the flat plane shape of the ligands, the space surrounding the ligands in the binding pocket, and the slight difference in the shape of the binding sites between PI3Kα and mTOR.  相似文献   

5.
Angiogenesis inhibition is a key step towards the designing of new chemotherapeutic agents. In a view to preparing new molecular entities for cancer treatment, eighteen 1,2,3-triazole-uracil ensembles 5a–r were designed and synthesized via the click reaction. The ligands were well characterized using 1H-, 13C-NMR, elemental analysis and ESI-mass spectrometry. The in silico binding propinquities of the ligands were studied sequentially in the active region of VEGFR-2 using the Molegro virtual docker. All the compounds produced remarkable interactions and potentially inhibitory ligands against VEGFR-2 were obtained with high negative binding energies. Drug-likeness was assessed from the ADME properties. Cytotoxicity of the test compounds was measured against HeLa and HUH-7 tumor cells and NIH/3T3 normal cells by MTT assay. Compound 5h showed higher growth inhibition activity than the positive control, 5-fluorouracil (5-FU), against both HeLa and HUH-7 cells with IC50 values of 4.5 and 7.7 μM respectively. Interestingly, the compounds 5a–r did not show any cytotoxicity towards the normal cell lines. The results advance the position of substituted triazoles in the area of drug design with no ambiguity.  相似文献   

6.
A series of novel 8‐aryl‐2‐morpholino quinazolines ( 11a – n , 12a – d , 14a – f , and 15 ) were synthesized from the precursor 2‐thioxo quinazolin‐4‐ones 8 . The 8‐aryl‐2‐morpholino quinazolines compounds were assayed for DNA‐PK and PI3K. All compounds showed low DNA‐PK % inhibition activity at 10 μM compound concertation, and the most active was 8‐(dibenzo[b,d]thiophen‐4‐yl) 12d with 38% inhibition. Similar pattern of PI3K α, β, γ, and δ isoforms inhibition activity at 10 μM were observed. The most active isoform was PI3K δ of 41% inhibition for 8‐(dibenzo[b,d]furan‐4‐yl) compound 11 . Most compounds were less active than expected in spite of the strong structural resemblance to known inhibitors ( NU7441 , 3 , 4 , and 6 ). Loss of activity could be attributed to the tautomerization to the aromatic enol (4‐OH), which could specify that the important functional group for the activity is the 4‐carbonyl (C=O) group. Alternatively, the aromatization of the pyrimidine heterocyclic ring could alter the conformation, and thus binding site, of the 2‐morpholine ring, which could reduce the compound‐receptor hydrogen bonding to the morpholine 4‐oxygen. Selected compounds displayed appreciable cytotoxicity with 6‐chloro‐8‐(dibenzo[b,d]thiophen‐4‐yl)‐2‐morpholinoquinazolin‐4(1H)‐one 11j exhibiting the greatest activity with an IC50 of 9.95 μM. Therefore, the mechanism of the cytotoxicity of compound 11j were not through DNA‐PK or PI3K inhibition activity.  相似文献   

7.
Protein-protein interactions play a central role in medicine, and their modulation with small organic compounds remains an enormous challenge. Because it has been noted that the macromolecular complexes modulated to date have a relatively pronounced binding cavity at the interface, we decided to perform screening experiments over the vascular endothelial growth factor receptor (VEGFR), a validated target for antiangiogenic treatments with a very flat interface. We focused the study on the VEGFR-1 D2 domain, and 20 active compounds were identified. These small compounds contained a (3-carboxy-2-ureido)thiophen unit and had IC50 values in the low micromolar range. The most potent compound inhibited the VEGF-induced VEGFR-1 transduction pathways. Our findings suggest that our best hit may be a promising scaffold to probe this macromolecular complex and for the development of treatments of VEGFR-1-dependent diseases.  相似文献   

8.
The present study a series of (E)‐5‐methoxy‐2‐styryl‐4H‐pyran‐4‐ones 6a , 6b , 6c , 6d , 6e , 6f , 6g , 6h , 6i , 6j was synthesized and evaluated for growth inhibitory inhibition against carcinoma cells. The growth inhibition study of eight carcinoma cell lines was examined and demonstrated that SKHep cells exhibit significant structure‐activity relationship in response to the tested compounds. Among them, 6f showed the most potent activity against SKHep, A549, AGS, and H460 cell lines with GI50 values of 0.17, 8.3, 3.6, 8.0 μM, respectively.  相似文献   

9.
Aurora A is a cell cycle kinase linked to cancer. For the purpose of finding biologically active of novel compounds and providing new ideas for drug-design, we performed virtual screening in commercially available databases and got pyrazoleanthrone with promising inhibitory activity against Aurora A. Optimization of solvent accessible C7 position of pyrazoleanthrone made us get thirteen target compounds. These pyrazoleanthrone derivatives were evaluated by Aurora A inhibition assays in vitro. The results show that some target compounds could inhibit Aurora A kinase. Meanwhile, these title compounds were tested in vitro against hepatocellular carcinoma(HepG2) cells by the 3'-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) method, showing that most of them had inhibitory potency. The inhibition rate of compound 6h was about 80% against HepG2 cells, and the 1C50 value was 17.4 μmol/L, which would be considered for further study.  相似文献   

10.
A novel series of N-1 arylidene amino imidazole-2-thiones were synthesized, identified using IR, 1H-NMR, and 13C-NMR spectral data. Cytotoxic effect of the prepared compounds was carried out utilizing three cancer cell lines; MCF-7 breast cancer, HepG2 liver cancer, and HCT-116 colon cancer cell lines. Imidazole derivative 5 was the most potent of all against three cell lines. DNA flow cytometric analysis showed that, imidazoles 4d and 5 exhibit pre-G1 apoptosis and cell cycle arrest at G2/M phase. The results of the VEGFR-2 and B-Raf kinase inhibition assay revealed that compounds 4d and 5 displayed good inhibitory activity compared with reference drug erlotinib.  相似文献   

11.
Inhibition of VEGFR-2 signaling pathway is one of the most promising approaches for the treatment of cancer. In this paper, we reported the design, synthesis, and biological evaluation of a series of biphenylurea derivatives as VEGFR-2 inhibitors. Among these compounds, 39 exhibited potent inhibitory activity against VEGFR-2 both in vitro and in vivo. The antiangiogenesis activity of 39 was further confirmed by both tube formation assay and chick chorioallantoic membrane assay.  相似文献   

12.
A series of 3-ethyl(methyl)-2-thioxo-2,3-dihydrobenzo[g]quinazolines (1–17) were synthesized, characterized, and evaluated in vitro for their antiangiogenesis VEGFR-2-targeting, antiproliferative, and antiapoptotic activities against breast MCF-7 and liver HepG2 cells. Flow cytometry was used to determine cancer-cell cycle distributions, and apoptosis was detected using annexin-V-FITC (V) and propidium iodide (PI) dyes. Fluorescence microscopy, in combination with Hoechst staining was used to detect DNA fragmentation. Most of the tested benzo[g]quinazolines demonstrated promising activity (IC50 = 8.8 ± 0.5–10.9 ± 0.9 μM) and (IC50 = 26.0 ± 2.5–40.4 ± 4.1 μM) against MCF-7 and HepG2, respectively. Doxorubicin was used as a reference drug. Compounds 13–15 showed the highest activity against both cancer cell lines. Differential effects were detected by cell-cycle analysis, indicating similarities in the actions of 13 and 14 against both MCF7 and HepG2, involving the targeting of G1 and S phases, respectively. Compound 15 showed similar indices against both cells, indicating that its cytotoxicity toward the examined cancer cells could be unselective. Interestingly, 14 and 15 showed the highest apoptosis (30.76% and 25.30%, respectively) against MCF-7. The DNA fragmentation results agreed well with the apoptosis detected by flow cytometry. In terms of antiangiogenesis activity, as derived from VEGFR-2 inhibition, 13 and 15 were comparable to sorafenib and effected 1.5- and 1.4-fold inhibition relative to the standard sorafenib. A docking study was conducted to investigate the interaction between the synthesized benzo[g]quinazolines and the ATP-binding site within the catalytic domain of VEGFR-2.  相似文献   

13.
以NVP-BEZ235为先导化合物,设计合成了10个磷脂酰肌醇3-激酶/哺乳动物雷帕霉素靶蛋白(PI3K/mTOR)抑制剂;目标化合物的结构经核磁共振波谱(NMR)和液相色谱-质谱(LC-MS)分析确证.采用噻唑蓝(MTT)比色法在人急性单核细胞白血病细胞株(MV4-11)、人乳腺癌细胞株(BT474)和人前列腺癌细胞株(PC-3)中测定了目标化合物的抗肿瘤活性,并对其构效关系进行了初步的讨论.结果表明,化合物11(FP-189)对MV4-11细胞株表现出较强的抑制活性(IC_(50)=22.5 nmol/L),且具有良好的溶解性,可以作为白血病治疗的候选药物进行下一步开发.  相似文献   

14.
Since the PI3K signaling pathway is the most commonly activated in human cancers,inhibition of PI3K is a promising approach to cancer therapy.In this study,a series of 2-methyl-5-nitrobenzeneacylhydrazones were designed and synthesized.All the new derivatives were tested by p110α enzymatic and Rh30 cellular assays.Further enzyme selectivity profiling proved that 6e and 7 were potential selective PI3K inhibitors.  相似文献   

15.
Inhibition of VEGFR-2 signaling pathway has already become one of the most promising approaches for the treatment of cancer. In this study, we describe the design, synthesis, and biological evaluation of a series of O-linked indoles as potent inhibitors of VEGFR-2. Among these compounds, 18 showed significant anti-angiogenesis activities via VEGFR-2 in enzymatic proliferation assays, with IC50 value of 3.8 nmol/L. Kinase selectivity profiling revealed that 18 was a multitargeted inhibitor, and it also exhibited good potency against VEGFR-1, PDGFR-α and β.  相似文献   

16.
In this paper, we describe the synthesis of some new quinoxaline-piperazine-oxazole amide conjugates 6a-n from 3-chloroquinoxaline-2-carbonitrile using well-known reaction sequences. The synthesized compounds were characterized by 1H NMR,13C NMR, and mass spectral analysis. The compounds were tested for their in vitro antiproliferative activity toward four different cancer cell lines such as PC-3, MCF-7, DU-145, and A-549 by MTT method. The compounds, 6c, 6h, 6i , and 6n were found to be more potent than the standard Erlotinib. In vitro tyrosine kinase EGFR inhibition studies using four potent compounds revealed that 6n has double inhibiting tendency with value IC50 of 0.22 μM and 6h with value of IC50 0.27 μM compared to reference compound. Molecular docking studies of active compounds, 6c , 6h , 6i , and 6n on EGFR receptor suggested that all the compounds have more binding energies than that of Erlotinib. Furthermore, the in silico pharmacokinetic profile was accomplished for the active compounds, 6c , 6h , 6i , and 6n using SWISS/ADME and pk CSM, whereas compounds, 6h , 6i , and 6c followed Lipinski rule, Veber rule, Egan rule and Muegge rule. The remaining compound 6n did not follow Lipinski rule, Ghose rule because one common violation, that is, because of high molecular weight (MW > 350).  相似文献   

17.
以血管内皮生长因子受体-2(VEGFR-2)酪氨酸激酶的晶体结构为基础, 采用从头药物设计方法, 设计了一系列吲哚类化合物, 并用类药性和分子对接进行了筛选, 最后得到10个对接能量较低的化合物分子, 对具有最低结合能的化合物与VEGFR-2酪氨酸激酶的复合物进行了10 ns的分子动力学模拟, 并对其结合模式进行了分析. 这些化合物结构新颖, 可能作为抗肿瘤的先导化合物或候选药物. 本文结果为VEGFR-2酪氨酸激酶抑制剂的进一步改造、 设计及合成提供了理论基础, 并有助于开发高活性和高选择性的抗肿瘤药物.  相似文献   

18.
Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide), the major pungent ingredient of red pepper, has been reported to possess anti-carcinogenic and anti-mutagenic activities. In this study, the anti-migration activity of capsaicin on highly metastatic B16-F10 melanoma cells was investigated. Capsaicin significantly inhibited the migration of melanoma cells without showing obvious cellular cytotoxicity at low doses. This effect correlated with the down-regulation of phosphatidylinositol 3-kinase (PI3-K) and its downstream target, Akt. Although B16-F10 cell migration was increased by the PI3-K activator through the activation of Akt, these PI3-K activator-induced phenomena were attenuated by capsaicin. Moreover, capsaicin was found to significantly inhibit Rac1 activity in a pull-down assay. These results demonstrate that capsaicin inhibits the migration of B16-F10 cells through the inhibition of the PI3-K/Akt/Rac1 signal pathway. The present investigation suggests that capsaicin targets PI3-K/Akt/ Rac1-mediated cellular events in B16-F10 melanoma cells. Consequently, capsaicin administration should be considered an effective approach for the suppression of invasion and metastasis in malignant melanoma chemotherapy.  相似文献   

19.
Phytochemical screening of nonpolar fractions from the methanol extract of the Bamboo shoot skin Phyllostachys heterocycla var. pubescens resulted in the isolation of a new sterol-glucoside-fatty acid derivative (6’-O-octadeca-8″,11″-dienoyl)-sitosterol-3-O-β-d-glucoside (1), together with six known compounds. The chemical structures of the pure isolated compounds were deduced based on different spectral data. The isolated compounds were assessed to determine their cytotoxic activity, and the results were confirmed by determining their apoptotic activity. Compound 1 was more cytotoxic against the MCF-7 cells (IC50 = 25.8 µM) compared to Fluorouracil (5-FU) (26.98 µM), and it significantly stimulated apoptotic breast cancer cell death with 32.6-fold (16.63% compared to 0.51 for the control) at pre-G1 and G2/M-phase cell cycle arrest and blocked the progression of MCF-7 cells. Additionally, RT-PCR results further confirmed the apoptotic activity of compound 1 by the upregulation of proapoptotic genes (P53; Bax; and caspases 3, 8, and 9) and downregulation of the antiapoptotic genes (BCL2). Finally, the identified compounds, especially 1, were found to have high binding affinity towards both tyrosine-specific protein kinase (TPK) and vascular endothelial growth factor receptor (VEGFR-2) through the molecular docking studies that highlight its mode of action.  相似文献   

20.
N6-Isopentenyladenosine (i6A) is a naturally occurring modified nucleoside displaying in vitro and in vivo antiproliferative and pro-apoptotic properties. In our previous studies, including an in silico inverse virtual screening, NMR experiments and in vitro enzymatic assays, we demonstrated that i6A targeted farnesyl pyrophosphate synthase (FPPS), a key enzyme involved in the mevalonate (MVA) pathway and prenylation of downstream proteins, which are aberrant in several cancers. Following our interest in the anticancer effects of FPPS inhibition, we developed a panel of i6A derivatives bearing bulky aromatic moieties in the N6 position of adenosine. With the aim of clarifying molecular action of N6-benzyladenosine analogs on the FPPS enzyme inhibition and cellular toxicity and proliferation, herein we report the evaluation of the N6-benzyladenosine derivatives’ (compounds 2a–m) effects on cell viability and proliferation on HCT116, DLD-1 (human) and MC38 (murine) colorectal cancer cells (CRC). We found that compounds 2, 2a and 2c showed a persistent antiproliferative effect on human CRC lines and compound 2f exerted a significant effect in impairing the prenylation of RAS and Rap-1A proteins, confirming that the antitumor activity of 2f was related to the ability to inhibit FPPS activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号