首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of symmetrical tri‐ and tetrameric N‐ethyl‐ and N‐phenylurea‐functionalized cyclophanes have been prepared in nearly quantitative yields (86–99 %) from the corresponding tri‐ and tetraamino‐functionalized piperazine cyclophanes and ethyl or phenyl isocyanates. Their conformational and complexation properties have been studied by single‐crystal X‐ray diffraction, variable‐temperature NMR spectroscopy, and ESI‐MS analysis. The rigid 27‐membered trimeric cyclophane skeleton assisted by a seam of intramolecular hydrogen bonds results in a preorganized ditopic recognition site with an all‐syn conformation of the urea moieties that, complemented by a lipophilic cavity of the cyclophane, binds molecular and ionic guests as well as ion pairs. The all‐syn conformation persists in acidic conditions and the triprotonated triurea cyclophane binds an unprecedented anion pair, H2PO4????HPO42?, in the solid state. The tetra‐N‐ethylurea cyclophane is less rigid and demonstrates an induced‐fit recognition of diisopropyl ether in the solid state. The guest was encapsulated within the lipophilic interior of a quasicapsule, formed by intramolecular hydrogen‐bond‐driven folding of the 36‐membered cyclophane skeleton. In the gas phase, the essential role of the urea moieties in the binding was demonstrated by the formation of monomeric 1:1 complexes with K+, TMA+, and TMP+ as well as the ion‐pair complexes [KI+K]+, [TMABr+TMA]+ and [TMPBr+TMP]+. In the positive‐mode ESI‐MS analysis, ion‐pair binding was found to be more pronounced with the larger tetraurea cyclophanes. In the negative mode, owing to the large size of the binding site, a general binding preference towards larger anions, such as the iodide, over smaller anions, such as the fluoride, was observed.  相似文献   

2.
A racemic mixture of three-layered [3.3]paracyclophane ([3.3]PCP), 1, has been resolved into two enantiomers, and their absolute configuration was determined from a comparison of experimental chiroptical properties and density functional theory (DFT) calculations. A simple model comprising two p-xylenes and 1,2,4,5-tetramethylbenzene (durene) was used to explain the origin of the chiroptical properties of the three-layered cyclophane system.  相似文献   

3.
The geometries of [1.1.1.1]paddlane and [2.2.2.2]paddlane have been calculated via ab initio mo theory. In both cases, a short bridgehead-bridgehead distance and a relatively large bond order was found, indicating a bonding interaction between these formally non-bonded atoms. The energies of conversion to more stable compounds were estimated.  相似文献   

4.
A sequence of formylation followed by a carbene insertion reaction has led to the stepwise introduction of additional ethano bridges into 4,5,7,8- tetramethyl [22](1,4)cyclophane (1), providing syntheses of 5,7,8-trimethyl- [23](l,2,4)cyclophane (6), a mixture of 5,8-dimethyl[24(1,2,4,5)cyclophane (10) and 5,7-dimethyl[24(1,2,3,5)cyclophane (11, and-4-methyl[25](1,2,3,4,5)-cyclophane (14). This route to 14 completes a formal eight-step synthesis of [26](1,2,3,4,5,6)cyclophane (15, superphane) with an overall yield of 17%. A Birch reduction of 6 readily gave 12,15-dihydro-5,7,8-trimethyl[23](1,2,4)-cyclophane (7) in 85% yield.  相似文献   

5.
A new water-soluble and fluorescent imidazolium-anthracene cyclophane (1) effectively recognizes the biologically important GTP and I(-) over other anions in a 100% aqueous solution of physiological pH 7.4. Fluorescence and (1)H NMR spectra and ab initio calculations demonstrate that emission arises from the formation of an excimer state and quenching occurs upon GTP/I(-) binding through (C-H)(+)···A(-) hydrogen bond interactions.  相似文献   

6.
A new C3-symmetric drum-shaped homoditopic haxaamino bicyclic cyclophane and its hexachloride and hexaiodide complexes have been synthesized and characterized and dual recognition of guests has been demonstrated. Single-crystal X-ray analysis illustrates that bicyclic cyclophane has a cavity and side pockets for acetone molecules. The hexaprotonated state of this bicycle shows encapsulation of an iodide inside its cavity, and in hexachloride complex, chloride is recognized as Cl(-)...H2O in each of the three side pockets which are in extensive hydrogen bonding interactions with the water and chlorides. (1)H NMR experiments have also been carried out on hexatosylated cyclophane with the halides to study solution state binding.  相似文献   

7.
Cyclooligomerization of 2,6-dichloropyrazine 4 and benzyl 2,3-dihydroxybenzoate 5 under microwave irradiation resulted in a racemic pair of ester functionalized ortho-linked oxacalix[2]benzene[2]pyrazine 6, which was further transformed to the corresponding racemic carboxylic acid functionalized ortho-linked oxacalix[2]benzene[2]pyrazine 3. Both enantiomers of 3 adopt 1,3-alternate conformations with their two carboxylic acid groups pointing to opposite directions in the solid state. Enantiomers of 3 form a step-like one-dimensional supramolecular polymer via intermolecular hydrogen bond interactions between the carboxylic acids for crystals obtained in methanol. No hydrogen bonds were formed between the carboxylic acids for crystals of 3 obtained in pyridine and aqueous guanidine solutions; instead, intermolecular hydrogen bonds between the carboxylic acid groups of 3 and pyridine, as well as guanidinium ions were formed. Under metal-mediated self-assembly conditions, the pyrazinyl nitrogen atoms in 3 interacted with transition metal ions, such as Ag(I), Cu(II) and Zn(II), and resulted in the formation of four new metal-containing supramolecular complexes. Metallomacrocycles 7, 8 and 9 were formed by reactions of 3 with Ag(I) or Cu(II) ions by bridging two ligands 3 in the equatorial region via M-N coordination bonds. A one-dimensional coordination polymer 10 was generated by reaction between ligand 3 and Zn(II) ions, and a cage-based structure is presented in 10 by bridging of the cyclophane units by Zn(2+) ions via Zn-N and Zn-O bonds.  相似文献   

8.
Reaction of a bis‐tetrazinyl pyridine pincer ligand, btzp, with a vanadium(III) reagent gives not a simple adduct but dichlorido{3‐methyl‐6‐[6‐(6‐methyl‐1,2,4,5‐tetrazin‐3‐yl‐κN2)pyridin‐2‐yl‐κN]‐1,4‐dihydro‐1,2,4,5‐tetrazin‐1‐yl‐κN1}oxidovanadium(IV) acetonitrile 2.5‐solvate, [V(C11H10N9)Cl2O]·2.5CH3CN, a species which X‐ray diffraction reveals to have one H atom added to one of the two tetrazinyl rings. This H atom was first revealed by a short intermolecular N...Cl contact in the unit cell and subsequently established, from difference maps, to be associated with a hydrogen bond. One chloride ligand has also been replaced by an oxide ligand in this synthetic reaction. This formula for the complex, [V(Hbtzp)Cl2O], leaves open the question of both ligand oxidation state and spin state. A computational study of all isomeric locations of the H atom shows the similarity of their energies, which is subject to perturbation by intermolecular hydrogen bonding found in X‐ray work on the solid state. These density functional calculations reveal that the isomer with the H atom located as found in the solid state contains a neutral radical Hbtzp ligand and tetravalent d1 V center, but that these two unpaired electrons are more stable as an open‐shell singlet and hence antiferromagnetically coupled.  相似文献   

9.
The time-dependent density functional theory (TDDFT) method was carried out to investigate the hydrogen-bonded intramolecular charge-transfer (ICT) excited state of 4-dimethylaminobenzonitrile (DMABN) in methanol (MeOH) solvent. We demonstrated that the intermolecular hydrogen bond C[triple bond]N...H-O formed between DMABN and MeOH can induce the C[triple bond]N stretching mode shift to the blue in both the ground state and the twisted intramolecular charge-transfer (TICT) state of DMABN. Therefore, the two components at 2091 and 2109 cm(-1) observed in the time-resolved infrared (TRIR) absorption spectra of DMABN in MeOH solvent were reassigned in this work. The hydrogen-bonded TICT state should correspond to the blue-side component at 2109 cm(-1), whereas not the red-side component at 2091 cm(-1) designated in the previous study. It was also demonstrated that the intermolecular hydrogen bond C[triple bond]N...H-O is significantly strengthened in the TICT state. The intermolecular hydrogen bond strengthening in the TICT state can facilitate the deactivation of the excited state via internal conversion (IC), and thus account for the fluorescence quenching of DMABN in protic solvents. Furthermore, the dynamic equilibrium of these electronically excited states is explained by the hydrogen bond strengthening in the TICT state.  相似文献   

10.
A novel [2.2]metacyclophane in which two benzene rings are linked together with a carbon-carbon double bond and a disilane unit was prepared. Photolysis of the cyclophane in the presence of oxygen afforded the 4,5-dihydro-4,5-disilapyrene derivative via a transannular dehydrogenation reaction.  相似文献   

11.
Reaction of [Ru(acac)(2)(CH(3)CN)(2)] with 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,4-dihydro-1,2,4,5-tetrazine (H(2)L) results in formation of an unexpected dinuclear complex [(acac)(2)Ru(III)(L(1))Ru(III)(acac)(2)] (1) in which the bridging ligand [L(1)](2)(-) contains an (-)HN[bond]C[double bond]N[bond]N[double bond]C[bond]NH(-) unit arising from two-electron reduction of the 1,4-dihydro-1,2,4,5-tetrazine component of H(2)L. The crystal structure of complex 1 confirms the oxidation assignment of the metal ions as Ru(III) and clearly shows the consequent arrangement of double and single bonds in the bridging ligand, which acts as a bis-bidentate chelate having two pyrazolyl/amido chelating sites. Cyclic voltammetry of the complex shows the presence of four reversible one-electron redox couples, assigned as two Ru(III)/Ru(IV) couples (oxidations with respect to the starting material) and two Ru(II)/Ru(III) couples (reductions with respect to the starting material). The separation between the two Ru(III)/Ru(IV) couples (Delta E(1/2) = 700 mV) is much larger than that between the two Ru(II)/Ru(III) couples (Delta E(1/2) = 350 mV) across the same bridging pathway, because of the better ability of the dianionic bridging ligand to delocalize an added hole (in the oxidized mixed-valence state) than an added electron (in the reduced mixed-valence state), implying some ligand-centered character for the oxidations. UV-vis-NIR spectroelectrochemical measurements were performed in all five oxidation states; the Ru(II)-Ru(III) mixed-valence state of [1](-) has a strong IVCT transition at 2360 nm whose parameters give an electronic coupling constant of V(ab) approximately 1100 cm(-1), characteristic of a strongly interacting but localized (class II) mixed-valence state. In the Ru(III)-Ru(IV) mixed-valence state [1](+), no low-energy IVCT could be detected despite the strong electronic interaction, possibly because it is in the visible region and obscured by LMCT bands.  相似文献   

12.
A tentative assignment is proposed for the He (Ia) photoelectron (PE.) spectra of the title compounds. It is based on the assumption that the first four π-bands occupy the same position in both spectra, as suggested by a qualitative correlation with the PE. spectrum of [24](1,2,4,5)cyclophane and by a previously proposed molecular orbital model. If this is accepted, then the bands due to electron ejection from the lone-pair orbitals are split by roughly 0.8 eV in the case of the 4, 13-diaza isomer, whereas no split can be detected in the case of the 4, 16-diaza isomer.  相似文献   

13.
The reaction of [{(C5Me5)CrCl2}2] with [2.2](1,4)cyclophane gave [(C5Me5)Cr{[2.2](1,4)cyclophane}] (1) and [(C5Me5)Cr{[2.2](1,4)cyclophane}Cr(C5Me5)] (2), depending on the reaction conditions. X-ray structure analysis showed 2 to be a ministack which in turn is stacked in the lattice. The chromium atoms are 6.035 A apart, and the distortion of the benzene rings to boat-shaped moieties is less pronounced than in parent [2.2](1,4)cyclophane. The NMR and EPR spectra were consistent with a S=1/2 ground state for 1 and with two interacting S=1/2 centers in 2. Spin density was found in the ligand pi systems, where its sign was negative when the pi system was adjacent to chromium, while on the nonbonded benzene moiety of 1 it was positive. Cyclic voltammograms showed reductions to 1- and 2(2-), as well as oxidations to 1+, 2+, and 2(2+) which were quasireversible, whereas oxidations to 1(2+) and 2(3+) were irreversible. Interaction between the metal ions was revealed by a 260 mV separation of the redox waves belonging to 2+, and 2(2+). Both cations were isolated as [B(C6H5)4]- salts, which in solution decomposed to [2.2](1,4)cyclophane and [(C5Me5)Cr{(eta6-C6H5)B(C6H5)3}] (3). The 1H and 13C NMR spectra of 3 were in accordance with an S=1 ground state. Solid-state magnetic measurements of the dimetallic compounds showed antiferromagnetic interaction with J=-122 cm-1 for 2, J=-31 cm-1 for 2+ (ground state S=1/2), and J=-23.5 cm-1 for 2(2+) (with H=-JS1S2). The decrease of J in the series 2, 2+, and 2(2+) was traced to the number of unpaired electrons and, for the mixed-valent cation 2+, to additional double exchange.  相似文献   

14.
在B3LYP/aug-cc-pvDZ理论水平上研究了CN,NO2,NH2,N3,N2H,NHNH2,N4H和N4H3含氮取代基取代1,2,4,5-四嗪环上的两个氢原子生成的衍乍物,预测了它们的分f构犁、分解能及含能性质.对衍生物分解能的研究结果表明.CN取代的衍生物的分解能比未取代时更高,而其余基团的取代使分解能降低.生成热的研究显示取代基化合物的生成热越大,取代1,2,4,5-四嗪中的氢原子后生成衍生物的牛成热也越大;CN,N3和N4H取代的1,2,4,5-四嗪衍生物的单位原子生成热在83.1~95.2 kJ,比文献报道的三叠氮基-均三嗪的(70.2 kJ)更高;N4H,N3,N4H3,N2H和CN取代的1,2,4,5-四嗪衍生物,生成热在904.9~1496.6 kJ·mol-1,但N4H和N4H3取代的衍生物分解能较小,稳定性较差.  相似文献   

15.
Experimental charge density distributions in a series of ionic complexes of 1,8-bis(dimethylamino)naphthalene (DMAN) with four different acids: 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid), 4,5-dichlorophthalic acid, dicyanoimidazole, and o-benzoic sulfimide dihydrate (saccharin) have been analyzed. Variation of charge density properties and derived local energy densities are investigated, over all inter- and intramolecular interactions present in altogether five complexes of DMAN. All the interactions studied [[O...H...O](-), C[bond]H...O, [N[bond]H...N](+), O[bond]H...O, C[bond]H...N, C pi...N pi, C pi...C pi, C[bond]H...Cl, N[bond]H(+)] follow exponential dependences of the electron density, local kinetic and potential energies at the bond critical points on the length of the interaction line. The local potential energy density at the bond critical points has a near-linear relationship to the electron density. There is also a Morse-like dependence of the laplacian of rho on the length of interaction line, which allows a differentiation of ionic and covalent bond characters. The strength of the interactions studied varies systematically with the relative penetration of the critical points into the van der Waals spheres of the donor and acceptor atoms, as well as on the interpenetration of the van der Waals spheres themselves. The strong, charge supported hydrogen bond in the DMANH(+) cation in each complex has a multicenter character involving a [[Me(2)N[bond]H....NMe(2)](+)....X(delta-)] assembly, where X is the nearest electronegative atom in the crystal lattice.  相似文献   

16.
A new water-soluble and fluorescent imidazolium-anthracene cyclophane 1 effectively recognizes and differentiates the biologically important GTP and ATP in 100% aqueous solution of physiological pH 7.4. Fluorescence, (1)H-NMR spectra and ab initio calculations demonstrate that excimer formation and fluorescence enhancement occur upon GTP and ATP binding, respectively, through (C-H)(+)···A(-) hydrogen bond interactions.  相似文献   

17.
The tetracationic cyclophane, cyclobis(paraquat-4,4'-biphenylene), binds 1,1'-disubstituted ferrocene-based polyethers as a result of (i) [pi...pi] stacking between the pi-electron-deficient bipyridinium units and the pi-electron-rich cyclopentadienyl rings and (ii) [C-H...O] hydrogen bonds between the alpha-bipyridinium hydrogen atoms and the polyether oxygen atoms. However, even the presence of a bulky tetraarylmethane group--which is too large to thread through the cavity of the cyclophane host--at the end of each of the two polyether substituents of the ferrocene-containing guest does not discourage adduct formation of the inclusion type. Thus, in these adducts, the ferrocene unit of the guest is located inside the cavity of the host with its two polyether chains protruding outward from the same side of the host. The alternative pseudorotaxane geometry is not observed in solutions of these 1:1 adducts. The host-guest adducts display absorption bands in the visible spectral region, characteristic of charge-transfer interactions. In the case of one of these adducts, reversible decomplexation/recomplexation takes place upon electrochemical oxidation/reduction of the ferrocene-based unit or upon reduction/oxidation of the tetracationic cyclophane.  相似文献   

18.
Reaction of 3,6-diphenyl-, 3,6-bis(2-pyridyl)- and the unsubstituted 1,2,4,5-tetrazine with 4,5-dihydro-1-methyl-2-(methylthio)pyrrole ( 2 ) and 1-raethyl-2-(methylthio)-4.5,6,7-tetrahydroazepine ( 3 ) gives 4,7-di-R-2,3-dihydro-1-methylpyrrolo[2,3-d]pyridazine ( 4 , R = phenyl, 2-pyridyl, hydrogen) and 6,9-di-R-1-methyl-2,3,4,5-tetrahydropyridazino[4,5-6]azepine ( 5 ), R = phenyl, 2-pyridyl, hydrogen), respectively, in reasonable to good yields. The compounds 4 (R = phenyl, hydrogen) are converted into their corresponding 1-methylpyrrolo-[2,3-d]pyridazines 6 by reaction with potassium permanganate in butanone. Reaction of 3-phenyl-1,2,4,5-te-trazine with 2 and 3 leads to the exclusive formation of the 7-phenyl isomer 4d and 9-phenyl isomer 5d , respectively, indicating that the cycloaddition is regiospecific. The mechanism is discussed.  相似文献   

19.
A saccharide cyclophane bearing an environment-sensitive fluorophore (1) was prepared by introducing not only three branches with a terminal galactose residue but also one with a dansyl moiety into a tetraaza[6.1.6.1]paracyclophane skeleton. Self-association behavior of the dansyl-appended saccharide cyclophane was characterized in aqueous media by fluorescence spectroscopy and dynamic light scattering measurements. At least in the concentrations below 1.0 x 10(-5) M, saccharide cyclophane 1 existed in a monomeric state, whereas it tended to form self-aggregated complexes in the higher concentration. Solvent polarity dependency on the emission spectra of 1 was examined by fluorescence spectroscopy. With increasing dioxane contents in dioxane/water solvents, the fluorescence intensity originating from the dansyl moiety of 1 increased along with a concomitant blue shift of the fluorescence maximum (lambda(em)). In the monomeric state of 1 in water, the dansyl moiety of 1 was not fully included into its cyclophane cavity but partially exposed to the bulk aqueous phase. In the higher concentration ranges in an aggregate state, however, the dansyl group of 1 was located in the apolar cyclophane cavity whose microenvironment was equivalent to the polarity of 1-butanol evaluated on the basis of a correlation between lambda(em) and solvent polarity. This indicates an intermolecular inclusion of the dansyl moiety within the cyclophane. When cyclodextrin (CD) was mixed with 1, the dansyl group of 1 was bound to an internal cavity of CD such as gamma-CD, beta-CD, 6-O-alpha-glucosyl-beta-CD, and 6-O-alpha-maltosyl-beta-CD with binding constants of 7.5 x 10(2), 7.8 x 10(2), 7.7 x 10(2), and 6.0 x 10(2) M(-1), respectively. Such a supramolecular assembling of dansyl-modified cyclophane 1 and CDs caused changes of the fluorescence spectra as well as appearance of induced CD bands in aqueous media. Furthermore, saccharide cyclophane 1 was selectively bound to peanut agglutinin (PNA), galactoside-binding lectin, which was readily monitored by a visible turbidity of the solution due to a cross-linking agglutination of these components, as well as by fluorescence spectroscopy.  相似文献   

20.
Spectroscopic studies on benzo[b]fluorenone (BF) solvatochromism in several aprotic and alcoholic solvents have been performed to investigate the fluorescence quenching by hydrogen bonding and proposed a weaker ability to form intermolecular hydrogen bond of BF than fluorenone (FN). In this work, the time-dependent density functional theory (TD-DFT) method was used to study the excited-state hydrogen bonding of both FN and BF in ethanol (EtOH) solvent. As a result, it is demonstrated by our theoretical calculations that the hydrogen bond of BF–EtOH complex is almost identical with that of FN–EtOH. Moreover, the fluorescence quantum yields of FN and BF in the alcoholic solvent is efficiently dependent on the energy gap between the lowest excited singlet state (fluorescent state) and ground state, which can be used to explain the fluorescence quenching by the excited-state hydrogen bond strengthening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号