首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 453 毫秒
1.
赵威  王竹  高佳研  韩茜 《人工晶体学报》2017,46(11):2213-2218
采用商洛钒尾矿、钾长石和粘土为原料制备泡沫陶瓷,在确定原料配方的基础上,研究烧结温度、升温速率和保温时间对泡沫陶瓷体积密度和抗压强度的影响,确定最优烧成工艺参数,制得质量轻、强度高、导热系数低的高性能泡沫陶瓷材料.结果表明:8℃/min从室温至1000℃,再以3℃/min的升温速度烧至1135 ℃保温30 min,在此烧成工艺条件下制备的泡沫陶瓷试样的体积密度为420 kg/m3,抗压强度为3.1 MPa,导热系数为0.09 W/(m· K).  相似文献   

2.
采用80wt;商洛钒尾矿为主要原料,加入钾长石、粘土为辅助原料,以SiC为发泡剂,制备性能优异的轻质高强陶瓷颗粒.采用单因素变量分析法研究钒尾矿含量、SiC添加量、烧成温度和保温时间对陶粒结构及性能的影响.研究结果表明:随着发泡剂SiC含量的增加、烧成温度的提高和保温时间的延长,陶粒的堆积密度和筒压强度均降低,吸水率均升高.最终加入2wt;SiC为发泡剂,在1125℃下保温30min制得堆积密度631kg/m3,筒压强度9.1MPa,吸水率3.1;的轻质高强陶瓷颗粒.  相似文献   

3.
目前采用固体废弃物制备轻质保温发泡陶瓷成为研究热点,但关于发泡陶瓷布料工艺的研究寥寥无几.本文采用钼尾矿为主要原料,分别加入不同含量发泡剂SiC,然后采用分层分区布料方式烧制轻质保温发泡陶瓷.研究发泡剂含量、布料工艺对发泡陶瓷试样性能的影响.最终制得发泡均匀,体积密度0.44 g/cm3,抗压强度3.9 MPa,导热系数0.15 W/(m·k)的发泡陶瓷试样.本研究采用分层分区布料工艺烧制发泡陶瓷,为缩短发泡陶瓷烧成周期提供了一条可行的途径.  相似文献   

4.
以固体废弃物钼尾矿为主要原料,辅以适量的粘土与石英,制备出了建筑陶瓷砖,并研究了不同烧成温度、保温时间对陶瓷砖性能的影响.结果表明,以钼尾矿为主要原料,采用压制成型法,在烧成温度1165 ℃、保温时间120 min条件下,可制备出抗折强度为46.85 MPa、吸水率为0.43;、体积密度为2.23 g/cm3的高性能陶瓷砖.以钼尾矿为原料制备建筑陶瓷砖,将固体废弃物转化为一种产品,形成一个闭合的产品生产链,可消耗大量的工业固体废弃物,减少其对环境的污染,具有良好的环保效益.  相似文献   

5.
黎阳  刘卫  陈璐 《人工晶体学报》2012,41(3):787-791
以SiC陶瓷前驱体聚碳硅烷(polycarbosilane,PCS)为粘结剂、SiC微粉为填料、聚氨酯海绵为模板,低温制备出了SiC泡沫陶瓷.研究了SiC颗粒粒度和PCS含量对SiC泡沫陶瓷线收缩率、体积密度、微观结构与抗弯强度的影响.确定了不同粒度SiC颗粒制备泡沫陶瓷的最佳烧成温度.结果表明,随SiC颗粒粒度与PCS含量的增加泡沫陶瓷的线收缩率增大、体积密度降低;泡沫陶瓷的抗弯强度随SiC颗粒粒度的增大而降低;颗粒粒度小于1μm时,最佳烧成温度为1200℃,颗粒粒度大于1μm时,最佳烧成温度为1100℃;PCS在1100℃与1200℃热解可得到β-SiC晶粒,其晶粒尺寸为12.2 nm与19.6 nm.  相似文献   

6.
孙文飞  刘卫  黎阳 《人工晶体学报》2017,46(6):1038-1042
通过有机模板复制法,以磷酸二氢铝为粘结剂,950 ℃烧成制备了高强度SiC泡沫陶瓷.研究了浆料中SiC含量和磷酸二氢铝含量对SiC泡沫陶瓷微观结构与性能的影响.结果表明:SiC微粉由A型Al(PO3)3粘结起来,烧成泡沫陶瓷通孔结构良好,开气孔率介于75;~91;之间.随着磷酸二氢铝含量的增加,烧成泡沫陶瓷的线收缩率、体积密度和抗折强度均逐渐增加,而开气孔率则逐渐减小;随着SiC含量的增加,烧成泡沫陶瓷的线收缩率和开气孔率均逐渐减小,而体积密度和抗折强度则逐渐增加.磷酸二氢铝含量为40;、SiC含量为60;时,泡沫陶瓷的抗折强度达(2.22±0.26) MPa.  相似文献   

7.
以单质硼粉和石墨粉为原料,采用放电等离子烧结技术(Spark Plasma Sintering,SPS)制备了碳化硼陶瓷,使碳化硼的合成和致密化一次完成。系统研究了烧结温度、烧结压力、保温时间和升温制度等SPS工艺条件对碳化硼陶瓷烧结性能的影响。结果表明:碳化硼合成的起始温度在1100℃左右;较高的烧结温度和烧结压力、适中的保温时间和升温速率,以及两步保温的升温制度有利于碳化硼陶瓷的烧结致密化;确定了适宜的SPS工艺条件为烧结温度1800℃、烧结压力40 MPa、保温时间6 min,升温速率100℃/min、两步保温,在此条件下得到了致密度较高的碳化硼陶瓷。  相似文献   

8.
以黄金尾矿分选长石后剩余的尾矿为主要原料,添加膨润土、煤粉制备了轻质高强陶粒.在黄金尾矿和膨润土比例为7:3时,采用正交法探讨了煤粉添加量和烧结制度对陶粒堆积密度、吸水率和颗粒强度的影响.结果表明,煤粉的最佳添加量为3;,最优工艺参数为:预热温度400℃,预热时间30 min,焙烧温度1100℃,焙烧时间50 min.在该条件下制备高性能陶粒的堆积密度为803 kg·m-3,表观密度为1795 kg·m-3,吸水率为0.24;,颗粒强度为16.59 MPa.  相似文献   

9.
以粉煤灰为主要原料,采用碳热还原氮化法合成β-Sialon粉体,再以该粉体为主要原料,添加适量Y2 O3烧结助剂,利用微波无压烧结技术研究β-Sialon陶瓷的微波烧结行为.结果表明:活性炭与粉煤灰质量比值(m./mf)为0.43,氮气流量为0.5 L/min,合成温度为1450℃,保温6h条件下,获得显微形貌为粒状,z=2的β-Sialon粉体;在微波烧结温度为1500℃,保温时间为20 min条件下,获得试样的密度为2.86 g/cm3,相对密度为92.3;,HV0.5为1528.  相似文献   

10.
本文采用商洛堆积量较大的金尾矿为主要原料,加入少量粘土、长石制备轻质高强陶瓷颗粒.研究生坯成球加水量、金尾矿含量、发泡剂含量和烧成温度对该金尾矿基陶粒性能的影响.采用光学显微镜、万能试验机、扫描电镜等对陶粒的断面形貌、筒压强度、显微结构等进行测试分析,确定最优工艺参数.最终制得金尾矿基轻质高强陶粒的筒压强度为10.2 MPa,堆积密度为762 g/cm3,吸水率为2.6;.  相似文献   

11.
本文利用简单、高效的浆料直接发泡法制备气孔率高达96%的Al2O3/Si泡沫陶瓷,并选用简便、易行的焦炭埋烧工艺在Al2O3/Si泡沫陶瓷坯体中生长出大量SiC纳米线。通过控制烧结温度来观察分析SiC纳米线的生长形貌变化。采用扫描电子显微镜(SEM)、X射线衍射仪、BET比表面积测试仪、电子万能试验机等对泡沫陶瓷的微观结构、物相组成、比表面积、气孔率、抗压强度、热导率进行分析与表征。结果表明,1 450 ℃烧结时得到的SiC纳米线最多,纳米线在泡沫陶瓷孔壁交织缠绕。同时观察到SiC纳米线的存在改变了氧化铝泡沫陶瓷固有的脆性断裂模式,SiC纳米线可有效促进泡沫陶瓷在压缩过程中的裂纹偏转。本实验制备了一种新型的纳米线缠绕在孔壁上的三维网络结构的泡沫陶瓷,为在泡沫陶瓷内部原位生长SiC纳米线提供了新的方法,更好地拓展了泡沫陶瓷在环境过滤、催化剂载体等领域中的应用。  相似文献   

12.
以三氧化钼和硫为原料,采用Ar气保护固相合成法,合成花状二硫化钼。采用XRD、SEM、TEM等手段对样品的结构和形貌进行表征。考察了原料比、反应温度、反应时间、升温速率对样品纯度的影响,制备出纯度较高的二硫化钼。结果表明:当MoO3与S物质的量之比为1∶7.5,反应温度为450 ℃,反应时间为4 h,升温速率为15 ℃/min,可得到纯度为99.4%的花状二硫化钼,该花状结构由厚度为10 nm左右的翘曲片层组成,TEM照片中可见0.62 nm单层二硫化钼结构,具有较大的比表面积,使其在储能、催化等领域有广阔的应用前景。  相似文献   

13.
采用固相反应方法在不同烧结升温速率下制备了BaTiO3陶瓷,并对陶瓷样品的晶体结构、表面形貌、介电、压电和铁电性能进行了测试和分析.结果表明:当烧结升温速率为3 ℃/min和5 ℃/min时陶瓷均为四方钙钛矿晶格结构,随升温速率的增大,四方相程度增强,材料平均晶粒尺寸减小,压电系数和铁电性能随之降低,但介电常数随之增大,当烧结升温速率为5 ℃/min介电常数最大,其值为3144.当烧结升温速率为1 ℃/min时陶瓷为正交钙钛矿晶格结构d33和Pr最大,其值为Pr=10 μC/cm2和d33=193 pC/N.  相似文献   

14.
以蓝晶石、粘土、氧化镁粉为原料,以淀粉为造孔剂和固化剂,引入适量的硅酸铝陶瓷纤维或多晶莫来石纤维和AlF3,通过莫来石晶须在陶瓷纤维表面的原位形成,制备了具有陶瓷纤维/莫来石晶须互锁结构的堇青石-莫来石轻质隔热材料.研究了陶瓷纤维在AlF3的作用下对材料显微结构观察、常温力学性能和导热系数的影响.研究表明:在AlF3的作用下,莫来石晶须在硅酸铝纤维表面垂直生长,部分穿插在发育良好的堇青石晶粒中;这种具有陶瓷纤维/莫来石晶须互锁结构的的陶瓷材料,其力学性能得以提高并降低了材料的导热系数.  相似文献   

15.
Pavel Hrma 《Journal of Non》2009,355(4-5):257-263
Glass fining has an undesirable side effect: glass foaming. In a recent experimental study, the foam volume responded dramatically when the rate of temperature-increase varied from 5 to 15 °C/min. This observation indicates that an enhanced temperature-increase rate (a natural consequence of the increased processing rate experienced as a result of the transition to oxy-fuel firing) may exert a substantial influence on glass foaming in advanced glass-melting furnaces. This paper attributes this effect to the change of mode of foam formation as a response to an increased rate of heating.  相似文献   

16.
大尺寸低缺陷碳化硅(SiC)单晶体是功率器件和射频(RF)器件的重要基础材料,物理气相传输(physical vapor transport, PVT)法是目前生长大尺寸SiC单晶体的主要方法。获得大尺寸高品质晶体的核心是通过调节组分、温度、压力实现气相组分在晶体生长界面均匀定向结晶,同时尽可能减小晶体的热应力。本文对电阻加热式8英寸(1英寸=2.54 cm)碳化硅大尺寸晶体生长系统展开热场设计研究。首先建立描述碳化硅原料受热分解热质输运及其多孔结构演变、系统热输运的物理和数学模型,进而使用数值模拟方法研究加热器位置、加热器功率和辐射孔径对温度分布的影响及其规律,并优化热场结构。数值模拟结果显示,通过优化散热孔形状、保温棉的结构等设计参数,电阻加热式大尺寸晶体生长系统在晶锭厚度变化、多孔介质原料消耗的情况下均能达到较低的晶体横向温度梯度和较高的纵向温度梯度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号