首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
InP films were grown by chemical beam epitaxy using trimethylindium (TMI) and pure phosphine (PH3) in a flow control mode with hydrogen as the carrier gas, with the TMI flow rate fixed at 3 SCCM. Substrate temperatures were varied between 505 and 580°C and V/III ratios from 3 to 9. InP layers with high optical quality (intense and narrow excitonic transition lines) and high crystalline quality (narrow and symmetric X-ray diffraction peaks) could be grown only within a narrow parameter window around a substrate temperature of 545°C (δTs ≤ 25°C) and a V/III ratio of 5.5 (δ(V/III) ≤ 2). Carrier densities of 8 × 1014 cm-3 with mobilities of 70000 cm2/V.s measured at 77 K were obtained for growth conditions close to the edge of this parameter window towards low V/III ratios. The growth rate of inP was also clearly at its maximum in the given parameter window. Leaving the window, by changing either the growth temperature or the V/III ratio, significantly decreased the growth rate. This reduced growth rate was accompanied by a degradation in the crystalline quality. We also demonstrate that for higher TMI flow the parameter window shifts to higher growth temperatures. The InP could be doped effectively with Si in the range from 9 × 1015 to 3 × 1018 cm-3.  相似文献   

2.
Strontium titanate single crystals 15–20 mm in diameter and 40–80 mm in length were grown by a floating zone method with radiation heating. Additional crystal heating just below the molten zone by an in-growth annealing furnace was applied in order to lower the temperature gradients and to achieve slower cooling of the grown crystal. The crystal perfection was studied with X-ray topography and double-crystal diffractometry. The most perfect crystals were grown in [0 0 1] direction with single grain rocking curve widths of about 30″ and subgrain misorientations of 1′–3′ over 10×10 mm2 areas of the boule cross-section for both (0 0 1)-, (1 1 0)- and (1 1 1)-oriented slices. Such high-quality crystal can be grown reproducibly with starting materials of 4N grade quality.  相似文献   

3.
Experimental results are presented for SiC epitaxial layer growths employing a unique planetary SiC-VPE reactor. The high-throughput, multi-wafer (7×2″) reactor, was designed for atmospheric and reduced pressure operation at temperatures up to and exceeding 1600°C. Specular epitaxial layers have been grown in the reactor at growth rates ranging from 3–5 μm/h. The thickest layer grown to date is 42 μm thick. The layers exhibit minimum unintentional n-type doping of 1×1015 cm−3, and room temperature mobilities of 1000 cm2/V s. Intentional n-type doping from 5×1015 cm−3 to >1×1019 cm−3 has been achieved. Intrawafer layer thickness and doping uniformities (standard deviation/mean at 1×1016 cm−3) are typically 4 and 7%, respectively, on 35 mm diameter substrates. Moderately doped, 4×1017 cm−3, layers, exhibit 3% doping uniformity. Recently, 3% thickness and 10% doping uniformity (at 1×1016 cm−3) has been demonstrated on 50 mm substrates. Within a run, wafer-to-wafer thickness deviation averages 9%. Doping variation, initially ranging as much as a factor of two from the highest to the lowest doped wafer, has been reduced to 13% at 1×1016 cm−3, by reducing susceptor temperature nonuniformity and eliminating exposed susceptor graphite. Ongoing developments intended to further improve layer uniformity and run-to-run reproducibility, are also presented.  相似文献   

4.
Surface photoabsorption (SPA) measurements were used to clarify the CuPt ordering mechanism in Ga0.5In0.5P layers grown by organometallic vapor phase epitaxy. The CuPt ordering is known to be strongly affected by the growth temperature and the input partial pressure of the phosphorus precursor, i.e. the V/III ratio. The SPA peak at 400 nm was found to be a measure of the concentration of [ 10]-oriented phosphorus dimers on the surface, which are characteristic of the (2 × 4) reconstruction. Both ordering, measured using the low temperature photoluminescence peak energy, and the SPA signal difference due to P dimers were studied versus the growth temperature and V/III ratio. The degree of order decreases markedly with increasing growth temperature above 620°C at a constant V/III ratio of 40. This corresponds directly to a decrease of the [ 10]-oriented P dimer concentration on the surface determined using SPA. Below 620°C, the degree of order decreases as the growth temperature decreases, even though the concentration of P dimers increases. The presence of an isotropic “excess P” phase observed in the SPA spectrum at 480 nm might be responsible for the decrease of CuPt ordering, although it has previously been attributed to the slow rearrangement of adatoms. The degree of order is found to decrease monotonically with decreasing V/III ratio in the range from 160 to 8 at 670°C and from 40 to 8 at 620°C. This also corresponds directly to the decrease of the P dimer concentration on the surface measured using SPA. At 620°C and a V/III ratio of 160, the degree of order decreased despite an increase of the P dimer concentration. This may also be due to the formation of the isotropic “excess P” phase on the surface. The direct correlation of the [ 10]-oriented P dimer concentration and the degree of order with changes in temperature ( ≥ 620°C) and V/III ratio (≤ 160 at 670°C and ≤ 40 at 620°C) suggests that, in this range of growth parameters, the (2 × 4) surface reconstruction is necessary to form the CuPt structure, in agreement with published theoretical studies.  相似文献   

5.
Measurements of solid phase dopant concentration (S) of LPCVD Si thin films as a function of substrate temperature (Ts = 500−640 ° C) and gas phase doping ratio (R = 1 × 10−5 −4 × 10−2) by SIMS indicate different behaviors of P and B in the films. A linear relation S = b(T)R is observed for B-doped film with b(T) varying from 4 to 50 depending on Ts. Boron-doped microcrystalline film has a higher doping efficiency than that of P-doped ones.  相似文献   

6.
We report the structural and electrical properties of InAsSb epilayers grown on GaAs (0 0 1) substrates with mid-alloy composition of 0.5. InSb buffer layer and InAsxSb1−x step-graded (SG) buffer layer have been used to relax lattice mismatch between the epilayer and substrate. A decrease in the full-width at half-maximum (FWHM) of the epilayer is observed with increasing the thickness of the InSb buffer layer. The surface morphology of the epilayer is found to change from 3D island growth to 2D growth and the electron mobility of the sample is increased from 5.2×103 to 1.1×104 cm2/V s by increasing the thickness of the SG layers. These results suggest that high crystalline quality and electron mobility of the InAs0.5Sb0.5 alloy can be achieved by the growth of thick SG InAsSb buffer layer accompanied with a thick InSb buffer layer. We have confirmed the improvement in the structural and electrical properties of the InAs0.5Sb0.5 epilayer by quantitative analysis of the epilayer having a 2.09 μm thick InSb buffer layer and 0.6 μm thickness of each SG layers.  相似文献   

7.
An alcohol-thermal route has been developed to the growth of single crystals of yellow metastable PbO in largest dimensions of 11×1×0.1 mm3, using freshly synthesized β-PbO crystallites as seeds. The transformation of metastable β-PbO to stable form (-PbO) can be slowed down by choosing appropriate solvent as the growth medium. The obtained β-PbO crystals have a strong orientational growth parallel to the (0 0 1) plane and exhibit a lath shape. Studies found that cooling rate and NaOH concentration also have great influence on the crystallographic forms of the final products during the alcohol-thermal process.  相似文献   

8.
In this paper, polycrystalline materials of BaWO4 were synthesized by solid-state phase method, and a single crystal of BaWO4 was successfully grown along a and c-axis direction by using the Czochralski method. Up to 20×22×80 mm3 BaWO4 crystal was obtained, and X-ray powder diffraction results show that the as-grown BaWO4 crystal belongs to the scheelite structure. The effective segregation coefficients of Ba and W of the BaWO4 crystal were measured by the X-ray fluorescence method, and the effective segregation coefficients of Ba and W were near 1. The rocking curve from (2 0 0) diffraction plane of as-grown BaWO4 single crystal was measured on the High-resolution X-ray diffractometer D5005, and the full-width at half-maximum value was found to be 26.64′′ The density and hardness of the BaWO4 crystal was measured, the measured density was in agreement with the calculated result, and the Mohs hardness was about 4.  相似文献   

9.
We have used in situ scanning tunneling microscopy (STM) to study the facet formation in the selective growth of pyramidal Si nanocrystals on Si(0 0 1) windows in ultrathin 0.3-nm-thick SiO2 films. Broad (0 0 1) surfaces developed as the top of the crystals, and {1, 1, (2n+1)} (n=1–6) facets formed the sidewalls. As growth continued, the slope angle of sidewall facets increased, and {1, 1, 9} and {1, 1, (2m+1)} (0 <m < 4) facets often came to coexist on the sidewalls. On well-oriented Si(0 0 1) surfaces, layer-by-layer growth in the [0 0 1] direction was dominant. On vicinal Si(0 0 1) surfaces, lateral step growth took place in the initial stage, and the layer-by-layer growth was suppressed until after a large (0 0 1) surface had formed as the top of the crystal.  相似文献   

10.
InP layers were grown by chemical beam epitaxy (CBE) using high purity thermally precracked tertiarybutylphosphine (TBP) and trimethylindium (TMI) as the source of the group III element. For optimized substrate temperature and V/III ratio, InP films of good electrical and optical quality have been obtained; the n-type background carrier concentration is (1–2) × 1015 cm-3, with a Hall mobility at 77 K being μ77 = 45,000 cm2 V-1 s-1. Given the low value of the V/III ratio, and according to mass spectrosc measurements, the phosphorus species giving rise to epitaxy is expected to be the dimer P2. The TBP consumption in CBE is very low when compared to organometallic vapour phase epitaxy (OMVPE), typicaly below 0.25 g/μm of InP layer.  相似文献   

11.
This paper reports the growth and spectral properties of 3.5 at% Nd3+:LaVO4 crystal with diameter of 20×15 mm2 which has been grown by the Czochralski method. The spectral parameters were calculated based on Judd–Ofelt theory. The intensity parameters Ωλ are: Ω2=2.102×10−20 cm2, Ω4=3.871×10−20 cm2, Ω6=3.235×10−20 cm2. The radiative lifetime τr is 209 μs and calculated fluorescence branch ratios are: β1(0.88μm)=45.2, β2(1.06μm)=46.7, β3(1.34μm)=8.1. The measured fluorescence lifetime τf is 137 μm and the quantum efficiency η is 65.6%. The absorption band at 808 nm wavelength has an FWHM of 20 nm. The absorption and emission cross sections are 3×10−20 and 6.13×10−20 cm2, respectively.  相似文献   

12.
Besides the standard group V precursors AsH3 and PH3, so-called alternative precursors like TBAs and TBP (tertiary-butyl-arsine and tertiary-butyl-phosphine) are more and more important in today's MOVPE processes. A lot of publications have demonstrated that these precursors can be successfully used for the growth of different III–V materials. In this study we want to demonstrate that TBAs and TBP can be used as the group V precursor in a complete family of production scale reactors. It is shown that these precursors can be used for the growth of InP-based as well as for GaAs-based materials. The reactors that have been employed are medium scale reactors (AIX 200/4; 1 × 2 inch, 3 or 4 inch or 3 × 2 inch capability) and large scale Planetary Reactors®, in particular the AIX 2400 system (15 × 2 inch or 5 × 4 inch). Materials that have been grown are (Al)GaInP on GaAs and GaInAsP on InP. The lower cracking energy of these precursors compared to PH3 and AsH3 allows one to use lower growth temperatures and lower V/III ratios, particularly in combination with the high cracking efficiencies of the used reactors. For the growth of GaInAsP on InP, the consumption of TBP and TBAs is up to 8 times lower than using PH3 and AsH3. GaInP on GaAs could be grown with a V/III ratio as low as 25 in a Planetary Reactor®. Good crystalline quality is demonstrated by DCXD (e.g. for GaInP: FWHM = 35 arcsec, substrate 32 arcsec). PL intensity and growth rate are not affected by using the alternative precursors. The compositional uniformity is similar to layers grown with arsine and phosphine (e.g. 1.5 nm uniformity for GaInAsP (λ = 1.5 μm) on 2 inch; approximately 1 nm uniformity for GaInP) [1,2]. The purity of the grown layers depends mainly on the quality of the TBP and TBAs. Using high purity TBP, InP revealed background carrier concentration in the mid 1014 cm−3 regime. Our investigation shows that TBP and TBAs can replace phosphine and arsine in state of the art MOVPE reactors. Both for single and multi-wafer production MOVPE reactors these compounds can be used successfully for the growth of the entire material spectrum in the Al---Ga---In---As---P system.  相似文献   

13.
Surface topography and crystal-lattice perfection of homoepitaxial layers deposited by microwave plasma CVD on (0 0 1) and near-(0 0 1) facets polished on HPHT synthetic diamond are described. Optical micrographic techniques included birefringence, Nomarski and 2-beam interference. The synchrotron X-ray experiments comprised Laue topography plus a recently developed sensitive misorientation-measuring technique, reticulography. Two special circumstances enhanced information yield from the experiments. First, the substrate crystal was unusually strain-free and had a very low dislocation content. Second, epilayer growth had taken place in two stages, depositing thicknesses of 10 μm and 30–34 μm, respectively. This double deposition complicated the observations, but added features of scientific and practical interest. Epilayer cracking finally present had occurred almost entirely before the second growth stage. With assistance from quantitative data provided by reticulography, the X-ray diffraction properties of the substrate and epilayers are analysed. Lattice misorientations on the untreated lower surface of the substrate were only 1 arcsec except close to growth-sector boundaries and dislocation outcrops. The final epilayer growth surface above areas where cracking in the first epilayer was absent or sparse exhibited near-perfect-crystal diffraction behaviour.  相似文献   

14.
A high density of 1.02×1011 cm−2 of InAs islands with In0.15Ga0.85As underlying layer has been achieved on GaAs (1 0 0) substrate by solid source molecular beam epitaxy. Atomic force microscopy and PL spectra show the size evolution of InAs islands. A 1.3 μm photoluminescence (PL) from InAs islands with In0.15Ga0.85As underlying layer and InGaAs strain-reduced layer has been obtained. Our results provide important information for optimizing the epitaxial structures of 1.3 μm wavelength quantum dots devices.  相似文献   

15.
Growth of completely flux-separated YBa2Cu3O6 + δ (referred to as 123 phase) crystals using a novel technique is described. The technique employs a modification of the seed pulling method commonly used in crystal growth. The crystals are grown in the temperature range of 960–1000°C using a BaCuO2 flux. A 123 flux ratio of 1:5 is maintained. Photographs of the crystals and photomicrograph of the surfaces are presented to show complete flux-separation of the crystals measuring 6 mm × 3 mm × 1 mm. The Raman spectra recorded on the as-grown crystals show that they are in the tetragonal phase. Magnetic susceptibility measurements on crystals annealed in an oxygen atmosphere show a superconducting transition starting at 71 K. The present technique offers a possibility of growing large, completely flux-separated crystals of 123 for superconductivity research.  相似文献   

16.
Indium phosphide, gallium arsenide phosphide, and aluminum indium phosphide have been deposited by metalorganic vapor-phase epitaxy using tertiarybutylphosphine and tertiarybutylarsine. The effects of growth temperature and V/III ratio on the amount of silicon, sulfur, carbon, and oxygen in InP have been determined. Minimum incorporation was observed at 565 °C and a V/III ratio of 32. In this case, the material contained a background carrier concentration of 2.7×1014 cm−3, and the Hall mobilities were 4970 and 135,000 cm2/V s at 300 and 77 K. The oxygen contamination in AlInP was found to be only 9.0×1015 cm−3 for deposition at 650 °C and a V/III ratio of 35. The relative distribution of arsenic to phosphorus in GaAsyP1−y was determined at temperatures between 525 and 575 °C. The distribution coefficient [(NAs/NP)film/(PTBAs/PTBP)gas] ranged from 25.4 to 8.4, and exhibited an Arrhenius relationship with an apparent activation energy of 1.2 eV.  相似文献   

17.
We have grown undoped, Si- and Mg-doped GaN epilayers using metalorganic chemical vapor deposition. The grown samples have electron Hall mobilities (carrier concentrations) of 798 cm2/V s (7×1016 cm−3) for undoped GaN and 287 cm2/V s (2.2×1018 cm−3) for Si-doped GaN. Mg-doped GaN shows a high hole concentration of 8×1017 cm−3 and a low resistivity of 0.8 Ω cm. When compared with undoped GaN, Si and Mg dopings increase the threading dislocation density in GaN films by one order and two orders, respectively. Besides, it was observed that the Mg doping causes an additional biaxial compressive stress of 0.095 GPa compared with both undoped and Si-doped GaN layers, which is due to the incorporation of large amount of Mg atoms (4–5×1019 cm−3).  相似文献   

18.
A new crystal of Nd3+:Sr3Y(BO3)3 with dimension up to 25×35 mm2 was grown by Czochralski method. Absorption and emission spectra of Nd3+: Sr3Y(BO3)3 were investigated . The absorption band at 807 nm has a FWHM of 18 nm. The absorption and emission cross sections are 2.17×10−20 cm2 at 807 nm and 1.88×10−19 cm2 at 1060 nm, respectively. The luminescence lifetime τf is 73 μs at room temperature  相似文献   

19.
The quality of GaN epilayers grown by molecular beam epitaxy on substrates such as sapphire and silicon carbide has improved considerably over the past few years and in fact now produces AlGaN/GaN HEMT devices with characteristics among the best reported for any growth technique. However, only recently has the bulk defect density of MBE grown GaN achieved levels comparable to that obtained by MOVPE and with a comparable level of electrical performance. In this paper, we report the ammonia-MBE growth of GaN epilayers and HFET structures on (0 0 0 1)sapphire. The effect of growth temperature on the defect density of single GaN layers and the effect of an insulating carbon doped layer on the defect density of an overgrown channel layer in the HFET structures is reported. The quality of the epilayers has been studied using Hall effect and the defect density using TEM, SEM and wet etching. The growth of an insulating carbon-doped buffer layer followed by an undoped GaN channel layer results in a defect density in the channel layer of 2×108 cm−2. Mobilities close to 490 cm2/Vs at a carrier density of 8×1016 cm−3 for a 0.4 μm thick channel layer has been observed. Growth temperature is one of the most critical parameters for achieving this low defect density both in the bulk layers and the FET structures. Photo-chemical wet etching has been used to reveal the defect structure in these layers.  相似文献   

20.
The surface reconstructions of AlAs(100) layers grown by molecular beam epitaxy (MBE) on GaAs(100) were mapped as a function of substrate temperature and arsenic flux. Three main reconstructions were observed - a c(4×4) at lower temperatures and higher arsenic fluxes, a (2×4) at middle temperatures, and a (3×2) at higher temperatures and lower arsenic fluxes. Growth of AlAs on AlAs(100) is layer-by-layer for the high temperature and low temperature reconstructions. In the mid-temperature region, AlAs grows rough on (2×4) reconstructed AlAs(100) as indicated by rapidly damped reflection high-energy electron diffraction (RHEED) intensity oscillations and the appearance of three-dimensional (3D) features. The addition of fractional layers of Ga enhances the smooth growth of AlAs. A metastable (5×2) reconstruction was observed when a fraction of a layer of Ga was present on the surface. The results indicate that Ga segregates during the growth of AlAs on GaAs(100) at temperatures at least as low as 500°C, and that annealing at temperatures above 700°C removes most of the Ga from the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号