首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Carbon-doped InxGa1−xAs layers (x=0−0.96) were grown by metalorganic molecular beam epitaxy (MOMBE) using trimethylgallium (TMG), solid arsenic (As4) and solid indium (In) as sources of Ga, As and In, respectively. The carrier concentration is strongly affected by growth temperature and indium beam flux. Heavy p-type doping is obtained for smaller In compositions. The hole concentration decreases with the indium composition from 0 to 0.8, and then the conductivity type changes from p to n at x=0.8. Hole concentrations of 1.0×1019 and 1.2×1018 cm-3 are obtained for x=0.3 and 0.54, respectively. These values are significantly higher than those reported on carbon-doped InxGa1−xAs by MBE. Preliminary results on carbon-doped GaAs/InxGa1−xAs strained layer superlattices are also discussed.  相似文献   

2.
AlxGa1−xAs and AlxIn1−xAs alloys were grown on GaAs and InP, respectively, by chemical beam epitaxy, using trimethylamine alane (TMAA) as the source of aluminium. TMAA could be used properly only after some problems had been solved. Low carbon and oxygen concentrations were obtained in both alloys, leading to residual hole concentrations of 2 × 1016 cm-3 in Al0.3Ga0.7As. The abruptness of the AlGaAs/GaAs interface proved the absence of TMAA memory effect. The control of AlxIn1−xAs solid composition was more difficult than for GaxIn1−xAs, but was less sensitive to growth temperature. Photoluminescence intensities of Al0.3Ga0.7As and Al0.48In0.52As grown at 510°C were similar to those of MBE grown materials.  相似文献   

3.
We have grown layers of Ga1−xInxAs:C (x ≈ 0.01) on (100) GaAs by molecular beam epitaxy. As C source a graphite filament was used. Structures coherent with the substrate were obtained by adjusting properly the In and C concentrations. With simultaneous incorporation of In and C the strain is compensated and, consequently, the defect density is reduced. A maximum hole concentration value of p = 6×1019 cm−3 was achieved, which is twice higher than the saturation value of C doping of GaAs produced under the same conditions. There is evidence that this value is not in the saturation limit. The product of the hole density times the mobility increases, so the resistance decreases with higher C doping. Raman spectra show that the CAs peak broadens and shifts to lower frequencies for increasing concentration of indium. In H-passivated samples, Raman spectroscopy shows that CAs is surrounded by Ga atoms only. Indium atoms are thus present only in the second group III shell.  相似文献   

4.
Giant step structures consisting of coherently aligned multi-atomic steps were naturally formed during the molecular beam epitaxy growth of Al0.5Ga0.5As/GaAs superlattices (SLs) on vicinal (110)GaAs surfaces misoriented 6° toward (111)A. The growth of AlAs/AlxGa1−xAs/AlAs quantum wells (QWs) on the giant step structures realized Alx0Ga1−x0As (x0<x) quantum wires (QWRs). We studied the giant step structures and the QWRs by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). TEM observations revealed that the QWRs were formed at the step edges. The cross sections of the QWRs were as small as 10 nm×20 nm and the lateral distances between them were about 0.15 μm. We clarified the roles of the SLs to form the coherent giant step structures. From EDX analysis, it was estimated that the AlAs composition in the Al0.5Ga0.5As layers varied from 0.5 (terrace) to 0.41 (step edge). In the AlAs/AlxGa1−xAs/AlAs QWs, the AlAs compositional modulation and the confinement by the AlAs barriers led to the embedded Alx0Ga1−x0As regions. These results supported the existence of the Alx0Ga1−x0As QWRs on the giant step structures.  相似文献   

5.
We studied the structural and optical properties of a set of nominally undoped epitaxial single layers of InxGa1−xN (0<x0.2) grown by MOCVD on top of GaN/Al2O3 substrates. A comparison of composition values obtained for thin (tens of nanometers) and thick (≈0.5 μm) layers by different analytical methods was performed. It is shown that the indium mole fraction determined by X-ray diffraction, measuring only one lattice parameter strongly depend on the assumptions made about strain, usually full relaxation or pseudomorphic growth. The results attained under such approximations are compared with the value of indium content derived from Rutherford backscattering spectrometry (RBS). It is shown that significant inaccuracies may arise when strain in InxGa1−xN/GaN heterostructures is not properly taken into account. Interpretation of these findings, together with the different criteria used to define the optical bandgap of InxGa1−xN layers, may explain the wide dispersion of bowing parameters found in the literature. Our results indicate a linear, Eg(x)=3.42−3.86x eV (x0.2), “anomalous” dependence of the optical bandgap at room temperature with In content for InxGa1−xN single layers.  相似文献   

6.
Strain-compensated quantum cascade lasers operating at room temperature   总被引:1,自引:0,他引:1  
Quantum cascade (QC) lasers based on strain-compensated InxGa(1−x)As/InyAl(1−y)As grown on InP substrate using molecular beam epitaxy is reported. The epitaxial quality is demonstrated by the abundant narrow satellite peaks of double-crystal X-ray diffraction and cross-section transmission electron microscopy of the QC laser wafer. Laser action in quasi-continuous wave operation is achieved at λ≈3.6–3.7μm at room temperature (34°C) for 20 μm×1.6 mm devices, with peak output powers of 10.6 mW and threshold current density of 2.7 kA/cm2 at this temperature.  相似文献   

7.
A series of high quality δ-doped In0.53Ga0.47As samples have been grown lattice matched to InP with design doping densities in the range 2×1012 to 5×1012 cm−2. Analysis of the individual sub-band densities deduced from the Shubnikov-De Haas effect shows that both spreading and amphoteric behaviour increase with doping density.  相似文献   

8.
A systematic study of structural and electrical properties of GaSb and AlGaSb grown on GaAs by metalorganic chemical vapor deposition is reported. In general, the results obtained from surface morphologies, X-ray linewidths and Hall properties are consistent with each other and indicate that the optimal growth conditions for GaSb are at 525°C around V/III = 1. A highest hole mobility of 652 cm2/V · s at RT (3208 cm2/V · s at 77 K) and a lowest concentration of 2.8 × 1016 cm−3 (1.2 × 1015 cm−3 at 77 K) were obtained for GaSb grown under this optimal condition. Compared to the GaSb growth, a smaller V/III ratio is needed for the AlGaSb growth to protect the surface morphology. When Al was incorporated into GaSb growth, mobility decreased and carrier concentration increased sharply. The AlGaSb grown at 600°C had a background concentration about one order of magnitude lower than the AlGaSb grown at 680°C. Room-temperature current-voltage characteristics of GaSb/AlxGa1 − xSb/GaSb show a rectifying feature when Al composition x is higher than 0.3, suggesting a valence-band discontinuity at the AlGaSb/GaSb interface. A leakage current much higher than the value predicted by the thermionic emission theory is observed at 77 K, presumably due to a large number of dislocations generated by the huge lattice mismatch between GaSb and GaAs.  相似文献   

9.
M. Kamp  F. K  nig  G. M  rsch  H. Lü  th 《Journal of Crystal Growth》1992,120(1-4):124-129
Recently different new Al precursors have been developed to improve the electrical and optical quality of AlGaAs layers grown by MOMBE (CBE), since AlGaAs layers still suffer from the high incorporation of oxygen and carbon. Three approaches are introduced and results obtained from AlxGa1−xAs layers (0 < x ≤ 1) are discussed. APAH, a double ring structure molecule, was found to yield AlGaAs layers with high contents of carbon and nitrogen. The use of an Alane-adduct decreases impurity concentrations and improves optical properties. However, TIBAl is superior and provides highest PL response together with carrier concentrations below p = 1016 cm-3. Even though the concept of coordinative saturation is promising, results achieved by TIBAl showed that trialkyls could also be well suited for AlGaAs, assuming that they are properly synthesized.  相似文献   

10.
A high density of 1.02×1011 cm−2 of InAs islands with In0.15Ga0.85As underlying layer has been achieved on GaAs (1 0 0) substrate by solid source molecular beam epitaxy. Atomic force microscopy and PL spectra show the size evolution of InAs islands. A 1.3 μm photoluminescence (PL) from InAs islands with In0.15Ga0.85As underlying layer and InGaAs strain-reduced layer has been obtained. Our results provide important information for optimizing the epitaxial structures of 1.3 μm wavelength quantum dots devices.  相似文献   

11.
A thermodynamic analysis of stability for quarternary alloys of the type AxB1−xCyD1−y has been developed. The necessary and sufficient stability conditions of the four-component system with respect to diffusional processes were obtained. The calculation of the thermodynamic properties of InxGa1−xAsyP1−y solid solutions has been based on their pair approximation. Numerical simulation results shown that InxGa1−xAsyP1−y alloys can be only conditionally unstable in (T,x) space and are applicable to explain the composition modulation in InxGa1−xAsyP1−y epitaxial layers.  相似文献   

12.
A chemical equilibrium model is applied to the growth of the InxGa1−xN alloy grown by metalorganic vapor-phase epitaxy (MOVPE). The equilibrium partial pressures and the phase diagram of deposition are calculated for the InxGa1−xN alloy. The vapor-solid distribution relationship is discussed in comparison with the experimental data reported in the literature. It is shown that the solid composition of the InxGa1−xN alloy grown by MOVPE is thermodynamically controlled and that the incorporation of group III elements into the solid phase deviates from a linear function of the input mole ratio of the group III metalorganic sources under the conditions of high mole fraction of decomposed NH3 (high value of ), high temperature and low input V/III ratio. The origin of the deviation of the solid composition from the linear relation is also discussed.  相似文献   

13.
Vitreous BeF2 was prepared by two techniques; (1) remelting of a technical grade material, and (2) vacuum distillation/fluoridation. Infrared spectroscopy studies have established that the first material contains about 0.5 wt.% hydroxyl, predicted to be coherently incorporated into the vitreous network as edge-linked [Be(OH)4]2− units. The distilled BeF2 is water-free. The dc electrical conductivity of the remelted BeF2 was measured as σ = (7.9 × 103/T) exp(−24500 cal/mol/RT) ω−1 cm−1 and for the distilled BeF2 as σ = (3.0 × 105/T) exp(−36700 cal/mol/RT ω−1 cm−1 at temperatures to 280°C. Ionic transport studies utilizing a dc electrolysis polarization technique with N2−F2 and H2−HF gas electrodes have demonstrated that the fluorine ion is the transport species. A general model for fluorine transport is proposed based upon a modified anti-Frenkel defect model. The difference in the fluorine transport process for the undistilled grade of BeF2 is seen as a consequence of the anti-Frenkel defect pair interaction with the [Be(OH)4[2− groupings.  相似文献   

14.
Thermally stimulated luminescence (TSL) and infrared (IR) spectroscopy were measured in plasma grown Si1−xGexO2 (x=0, 0.08, 0.15, 0.25, 0.5) with different thicknesses (12–40 nm). A comparison with the TSL properties of thermally grown SiO2 and GeO2 was also performed. A main IR absorption structure was detected, due to the superposition of the peaks related to the asymmetric O stretching modes of (i) Si–O–Si (at ≈1060 cm−1) and (ii) Si–O–Ge (at 1001 cm−1). Another peak at ≈860 cm−1 was observed only for Ge concentrations, x>0.15, corresponding to the asymmetric O stretching mode in Ge–O–Ge bonds. A TSL peak was observed at 70°C, and a smaller structure at around 200°C. The 70°C peak was more intense in all Ge rich layers than in plasma grown SiO2. Based on the thickness dependence of the signal intensity we propose that at Ge concentrations 0.25x0.5 TSL active defects are localised at interfacial regions (oxide/semiconductor, Ge poor/Ge rich internal interface, oxide external surface/atmosphere). Based on similarities between TSL glow curves in plasma grown Si1−xGexO2, thermally grown GeO2 and SiO2 we propose that oxygen vacancy related defects are trapping states in Si1−xGexO2 and GeO2.  相似文献   

15.
We have grown undoped, Si- and Mg-doped GaN epilayers using metalorganic chemical vapor deposition. The grown samples have electron Hall mobilities (carrier concentrations) of 798 cm2/V s (7×1016 cm−3) for undoped GaN and 287 cm2/V s (2.2×1018 cm−3) for Si-doped GaN. Mg-doped GaN shows a high hole concentration of 8×1017 cm−3 and a low resistivity of 0.8 Ω cm. When compared with undoped GaN, Si and Mg dopings increase the threading dislocation density in GaN films by one order and two orders, respectively. Besides, it was observed that the Mg doping causes an additional biaxial compressive stress of 0.095 GPa compared with both undoped and Si-doped GaN layers, which is due to the incorporation of large amount of Mg atoms (4–5×1019 cm−3).  相似文献   

16.
InGaAsP has been grown by CBE at compositions of 1.1, 1.2 and 1.4 μm for the development of MQW-SCH lasers. The observed incorporation coefficients for TMI and TEG show strong temperature sensitivity while the phosphorus and arsenic incorporation behavior is constant over the substrate temperature range explored, 530 to 580°C setpoint. For higher substrate temperatures the growth rate increases with the largest growth rates occurring for the 1.4 μm quaternary. Low temperature photoluminescence indicates the possibility of compositional grading or clustering for the 1.1 μm material and also for the 1.2 μm material grown at the lowest substrate temperature. The final laser structure was grown with the InP cladding regions grown at 580°C with the inner cladding and active regions grown at 555°C. Using this approach we have successfully grown MQW-SCH lasers with the composition of the active InxGa1−xAs ranging from x=0.33 to x=0.73. Threshold current densities as low as 689 A/cm2 have been measured for an 800 μm×90 μm broad area device with x=0.68.  相似文献   

17.
Phonon behavior in the strained (InAs)m/(GaAs)n ultrathin superlattices grown by molecular beam epitaxy has been investigated by means of Raman scattering spectroscopy. The phonon frequency in the GaAs layers shifts toward lower energy with increasing InAs layer thickness under fixed thickness of GaAs layers. The frequency in the InAs layers does not change significantly, as deduced from the behavior of the InAs-like mode in InxGa1−xAs alloys. These observed results are phenomenologically discussed on the basis of the combined effect of phonon confinement in the respective layer and stress at the alternating interfaces. Furthermore, a large softening of the phonon confined in the GaAs layers decreases the frequency gap, resulting in traveling of the optical phonons confined in both layers. The strain at the interfaces is estimated by an empirical method, i.e., by comparing the frequency in the superlattice and in the alloy of equivalent composition. In the InxGa1−xAs alloys, the composition dependence of the mode frequency is considered as being due to the local strain. The group III elements are considered to be in the local strain state from an extended X-ray absorption fine structure (EXAFS) analysis.  相似文献   

18.
We worked out the excess energies for bulk InxGa1−xN and InxGa1−xN thin films on GaN and InN in order to investigate their thermodynamic stabilities. It has been found that the excess energy maximum shifted toward x0.80 for InGaN/GaN and x0.10 for InGaN/InN due to the lattice constraint in contrast with x0.50 for bulk. Moreover, it has been revealed that the excess energy for InGaN/GaN is larger than that for bulk at x>0.65. This suggests that In-rich films are less stable on GaN than bulk state. These results indicate that the lattice constraint has a significant influence on thermodynamic stabilities of thin films.  相似文献   

19.
Experimental results are presented for SiC epitaxial layer growths employing a unique planetary SiC-VPE reactor. The high-throughput, multi-wafer (7×2″) reactor, was designed for atmospheric and reduced pressure operation at temperatures up to and exceeding 1600°C. Specular epitaxial layers have been grown in the reactor at growth rates ranging from 3–5 μm/h. The thickest layer grown to date is 42 μm thick. The layers exhibit minimum unintentional n-type doping of 1×1015 cm−3, and room temperature mobilities of 1000 cm2/V s. Intentional n-type doping from 5×1015 cm−3 to >1×1019 cm−3 has been achieved. Intrawafer layer thickness and doping uniformities (standard deviation/mean at 1×1016 cm−3) are typically 4 and 7%, respectively, on 35 mm diameter substrates. Moderately doped, 4×1017 cm−3, layers, exhibit 3% doping uniformity. Recently, 3% thickness and 10% doping uniformity (at 1×1016 cm−3) has been demonstrated on 50 mm substrates. Within a run, wafer-to-wafer thickness deviation averages 9%. Doping variation, initially ranging as much as a factor of two from the highest to the lowest doped wafer, has been reduced to 13% at 1×1016 cm−3, by reducing susceptor temperature nonuniformity and eliminating exposed susceptor graphite. Ongoing developments intended to further improve layer uniformity and run-to-run reproducibility, are also presented.  相似文献   

20.
Segregation processes entail severe deviations from the nominal composition profiles of heterostructures grown by molecular beam epitaxy for most semiconductor systems. It is, however, possible to compensate exactly these effects, as shown here for InGaAs/GaAs. The deposition of a one-monolayer-thick indium-rich prelayer of InGaAs (or of a sub-monolayer amount of InAs) prior to growth of InxGa1−xAs allows forming a perfectly abrupt InxGa1−xAs-on-GaAs interface. Thermal annealing can furthermore be performed at the GaAs-on-InGaAs inter face, so as to desorb surface indium atoms and suppress In incorporation in the GaAs overlayer. This powerful approach has been validated from a detailed study of the surface composition at various stages of the growth of InGaAs/GaAs quantum wells, as well as from high-resolution transmission electron microscopy and photoluminescence investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号