首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
利用坩埚下降法生长出复合稀土卤化物K2 LaCl5:Ce单晶,该晶体为正交结构,晶胞参数为a=1.2745 nm,b=0.8868 nm,c=0.8018 nm,熔点为625℃.通过切割研磨抛光后得到φ12 mm×5 mm的透明圆柱体晶体.将该晶体进行X射线激发发射光谱、光致发光光谱、脉冲高度谱、γ射线衰减能谱、透过率等测试.在一定波段的紫外光以及X射线的激发下,K2 LaCl5:Ce晶体在355 nm与375 nm波长左右有宽的发射峰,分别对应于Ce3+的5d1→2 F5/2和5d1→2 F7/2能级跃迁.在紫外和γ射线的激发下,K2 LaCl5:Ce晶体的衰减时间分别为33 ns和23 ns,晶体的能量分辨率为5.9;.  相似文献   

2.
Cs2NaGdBr6∶ Ce(CNGB∶ Ce)是新近发现的性能优异的闪烁晶体,本文用Bridgman法成功制备出尺寸达φ25×25 mm3的CNGB∶Ce单晶,并测试了CNGB∶Ce晶体的相关闪烁性能.荧光光谱和X射线激发发射光谱测试结果表明CNGB∶Ce晶体主要有两个发射峰,分别位于383 nm和418 nm附近,分别对应于Ce3+的5 d→4f12F5/2和5d→4f12F7/2跃迁发射.γ射线能谱测试表明CNGB∶Ce晶体的光输出约为LaBr3∶Ce晶体的2/3,在662 keV处的能量分辨率为6.2;,衰减时间为76 ns左右,这些特点使得CNGB∶Ce晶体有望成为实用化的新型闪烁晶体.  相似文献   

3.
本文使用铱坩埚感应加热Czochralski法成功地生长出了无色透明且尺寸达φ50mm×60mm 的Lu2SiO5:e晶体.XRD结构分析表明, 该晶体为单斜结构.在室温下分别以X射线和紫外光为激发源测量了该晶体的发射光谱,获得的发射波长分别为403nm和420nm,光衰减时间为41ns,光产额达32000p/MeV.发射光谱的双峰结构以及晶体的发光特性证明其发光源于Ce3+离子的5d1→5F5/2 和 5d1→5F7/2跃迁.  相似文献   

4.
黄诗敏  万欢欢  杨帆  冯鹤 《人工晶体学报》2021,50(10):1951-1956
通过光学浮区法制备了铈掺杂焦硅酸钇钆(Gd0.99-xYxCe0.01)2Si2O7 (x=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) (简写为GYPS∶Ce)闪烁晶体,并用X射线衍射(XRD)进行了物相识别,发现其属于正交晶系Pna21。通过真空紫外(VUV)激发和发射光谱、光致发光(PL)衰减曲线、X射线激发发射(XEL)光谱、γ射线脉冲高度谱等表征了它们的光致发光特性和闪烁特性。VUV和XEL光谱的发射峰均位于360 nm左右,对应于5d→4f跃迁。样品的PL衰减时间在29.1~32.9 ns之间;闪烁衰减时间快分量约为28~68 ns,慢分量约为256~583 ns。晶体存在Gd3+→Ce3+的能量传递行为。  相似文献   

5.
采用坩埚下降法生长出不同摩尔分数Ce3+(1%、2%、4%、6%、8%)掺杂的KCaCl3:Ce单晶。晶体属于正交晶系,晶胞参数为a=0.756 0 nm,b=1.048 2 nm,c=0.726 6 nm。热重分析仪测得熔点为740 ℃,透过率测试显示晶体在可见光波段均具有较好光学透过率。对晶体的光致发光光谱、光致衰减时间、X射线激发发射光谱、透过率等光学性能进行了表征。光致发光光谱显示KCaCl3:Ce晶体在358 nm和378 nm波长左右有宽的发射峰,符合Ce3+的5d12F5/2和5d12F7/2能级跃迁,通过拟合,KCaCl3:Ce晶体的衰减时间在30 ns左右。晶体在X射线激发下均表现出优异的X射线发光性能。  相似文献   

6.
本文使用铱坩埚感应加热Czochralski法成功地生长出了无色透明且尺寸达5 0mm× 6 0mm的Lu2 SiO5:Ce晶体。XRD结构分析表明 ,该晶体为单斜结构。在室温下分别以X射线和紫外光为激发源测量了该晶体的发射光谱 ,获得的发射波长分别为 4 0 3nm和 4 2 0nm ,光衰减时间为 4 1ns,光产额达 32 0 0 0p/MeV。发射光谱的双峰结构以及晶体的发光特性证明其发光源于Ce3 离子的 5d1→5F5/ 2 和 5d1→5F7/ 2 跃迁。  相似文献   

7.
采用坩埚下降法生长了直径为25.4 mm的纯溴化铈晶体和0.1%、0.2%和0.5%(摩尔分数)Sr2+掺杂的溴化铈晶体。将所生长晶体加工成直径25.4 mm、厚度10 mm的坯件,并进行紫外和X射线激发荧光光谱、137Cs源激发多道能谱等测试。结果表明:Sr2+掺杂会导致晶体X射线激发下的发射光谱出现轻微红移,而随着Sr2+掺杂量的增加,晶体的能量分辨率依次提高,光输出依次降低;当Sr2+掺杂量为0.5%时,溴化铈晶体的能量分辨率最高,达3.83%@662 keV,但过高含量的Sr2+掺杂会造成晶体生长困难。综合考虑晶体性能和生长情况,Sr2+掺杂量为0.2%时较为适宜,所获得的ϕ25.4 mm×25.4 mm CeBr3∶0.2%Sr晶体封装件的能量分辨率为3.92%@662 keV。  相似文献   

8.
采用坩埚下降法,在真空密封的石英坩埚中成功生长出复合稀土卤化物RbY2Cl7:Ce单晶.此晶体属于正交晶系,晶胞参数为:a=1.27469 nm,b=0.69302 nm,c=1.26655 nm.熔点为617℃.表征了该晶体的X射线光致激发-发光光谱、激发发射光谱、γ射线多道能谱及激发衰减曲线等闪烁性能.RbY2Cl7:Ce的激发-发射光谱显示发射峰在389 nm左右,激发峰在336 nm左右.在137Cs源的γ射线激发下能量分辨率约为9.8;,闪烁衰减时间约为35 ns.  相似文献   

9.
掺铈钆铝镓石榴石(Gd3(Al, Ga)5O12∶Ce,简称GAGG∶Ce)闪烁晶体是近年来发现的一种新型稀土闪烁晶体,具有光输出高、能量分辨率高、衰减时间短、无自辐射和不潮解等优点,在核医学成像、安检和环境监测等领域具有广阔的应用前景。本文报道了GAGG∶Ce晶体的提拉法生长与闪烁性能表征。利用高温固相反应法合成GAGG∶Ce原料,采用XRD对合成的原料进行了物相分析,结果表明,在1 500℃下煅烧12 h合成的多晶料为纯GAGG相。利用提拉法生长出尺寸?50 mm×90 mm的GAGG∶Ce晶体,测试了其透过光谱、X射线激发发射光谱和脉冲高度谱,结果表明,7 mm厚样品550 nm的透过率为81.5%,晶体X射线激发发射峰中心波长位于550 nm,晶体的光输出为59 000 photons/MeV,能量分辨率为6.2%@662 keV,晶体衰减时间快分量为149 ns,慢分量为748 ns。  相似文献   

10.
采用自发成核坩埚下降法生长了直径25 mm的铈、锶共掺溴化镧(LaBr3∶5%Ce,x%Sr,简称LaBr3∶Ce, Sr,其中x=0.1、0.3、0.5,摩尔分数)闪烁晶体,测试对比了晶体的X射线激发发射光谱、透过光谱和脉冲高度谱等。结果表明,不同Sr2+掺杂浓度的LaBr3∶Ce, Sr晶体在X射线激发下的发射光谱波形基本一致,但相比未掺杂Sr2+的样品,发射峰的峰位发生了明显的红移,随着Sr2+掺杂浓度的增大,发射峰红移程度增大。不同Sr2+掺杂浓度的LaBr3∶Ce, Sr晶体在350~800 nm不存在明显的吸收峰,0.3%和0.5%Sr2+掺杂晶体的透过率有所降低。随着Sr2+掺杂浓度的增大,能量分辨率逐步提高,Sr2+掺杂浓度为0.5%时,LaBr3∶Ce, Sr晶体的能量分辨率最高,达2.99%@662 keV...  相似文献   

11.
本文采用中频感应提拉法生长了尺寸为ø35 mm×70 mm的完整的YAlO3∶Ce(YAP∶Ce)晶体。XRD测试结果表明所生长的YAP∶Ce晶体主相为YAP相,同时存在第二相YAG相;光致激发发射光谱表明晶体发射波长在344 nm和376 nm,激发波长分别为273 nm、290 nm和305 nm;X射线激发发射光谱表明晶体发射波长在377 nm附近;在γ高能射线激发下,晶体衰减时间曲线呈指数衰减,拟合后得到YAP∶Ce晶体的衰减时间为46 ns,通过高斯拟合以后YAP∶Ce晶体的能量分辨率和绝对光产额分别为8.51%和8 530 ph/MeV。本文分析了晶体生长过程中产生开裂和相变的原因,通过优化温场和工艺可以得到完整无开裂的晶体。如何获得更大尺寸的无开裂、无相变晶体,并实现量产是该晶体规模化应用中需要解决的重要技术难题。  相似文献   

12.
In this work, Ce:YAG crystal with the size of ?4 in was successfully grown by the TGT method. The optical and scintillation properties of as-grown Ce:YAG crystals were investigated. Three obvious absorption bands at 223, 340 and 460 nm and two weak color-center absorption bands at 296 and 370 nm are observed in as-grown Ce:YAG crystal. Fluorescence with an emission peak at 398 nm is observed due to the color centers, and absorption bands of the color centers can be eliminated by annealing in O2 or H2 atmosphere at 1673 K for 24 h. Yellow-green fluorescence centered at 530 nm is found when the crystal was excited at 460 nm and the 530 nm excitation spectrum shows two peaks at 340 and 460 nm. X-ray fluorescence spectrum of as-grown crystal shows three emission peaks at 300, 360 and 530 nm. An average light output of 1360 phe/MeV and a single exponential decay with the decay time constant of 62.97 ns are found in as-grown Ce:YAG crystal.  相似文献   

13.
Yb:YAG闪烁晶体的UV发光特性   总被引:1,自引:0,他引:1  
通过对不同掺杂浓度Yb:YAG晶体的透过光谱、激发光谱、发射光谱和衰减时间的测量,研究了Yb:YAG晶体的UV发光特性和发光机制.Yb:YAG晶体在紫外波段具有宽的激发带和发射带.最强的发射峰位于320~350nm波长范围,此即为Yb:YAG晶体的闪烁发光峰;次强的发射峰位于500nm附近.Yb:YAG晶体的UV发光衰减时间小于50ns.Yb:YAG晶体的UV发光行为是电子从Yb3+离子的4f壳层向配体O2-的满壳层的分子轨道迁移的结果,属于电荷迁移(CT)发光.  相似文献   

14.
We investigated the scintillation properties of Cs2LiGdCl6:Ce3+ as a function of the Ce concentration. X-ray excited luminescence spectra of the scintillation material showed broad emission bands between 360 and 460 nm, with two overlapping peaks, due to the d→f transitions on Ce3+ ions. The samples provide good scintillation results. The energy resolution was found to be 5.0% (FWHM) at 662 keV for 10% Ce sample. Under γ-ray excitation, Cs2LiGdCl6:Ce3+ showed three exponential decay time components of about 130–200 ns decay time constant. The light output of the investigated samples was 20,000 photons/MeV for a 10% Ce concentration. The light output deviation from the linear response is within 7% between the energy range of 31 and 1333 keV. Overall, the scintillation properties confirm that Cs2LiGdCl6:Ce3+ single crystal is a promising candidate for medical imaging and radiation detection.  相似文献   

15.
用波长为266nm的激光激发不同尺寸、不同掺Ce3+浓度的YAP:Ce闪烁晶体,测量其光致激光荧光衰减常数,测量结果表明:YAP:Ce闪烁晶体的光致荧光衰减常数约为18.2ns,且与实验晶体厚度及Ce3+掺杂浓度(0.1;~0.6;原子分数)无关.  相似文献   

16.
Single crystals of Lu1‐xScxBO3:Ce (x=0.2, 0.3, 0.5, 0.7) were grown by Czochralski method. Continuous solid solution with calcite structure and a linear compositional dependency of crystal lattice parameter in the system Lu1‐xScxBO3:Ce are formed and their symmetry belong to hexagonal system with R3c space group checked by X‐ray powder diffraction. The electron probe micro‐analysis measurements show that the main inclusions in Lu1‐xScxBO3:Ce crystals are in the form of Sc rich oxide and Ce rich oxide. The ICP‐AES tests show that the more Sc ion content in Lu1‐xScxBO3:Ce, the smaller effective segregation coefficient of Ce in crystal will be. The X‐ray excited luminescence spectra of Lu1‐xScxBO3:Ce crystals all present a double peaked emission band with maxima round 370 and 400 nm corresponding to Ce3+ emission and a self trapped excitons (STE) band peaking at 269 nm. In addition, due to high density, high relative light yield, fast decay time and no‐hygroscopic property, Lu0.8Sc0.2BO3:1 at%Ce crystal could be a good candidate material for scintillation application by improving the crystal quality and cerium concentration. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
In this paper, photorefractive properties of Mg:Ce:Cu:LiNbO3 crystals were studied. The crystals doped with different concentration of Mg ions have been grown by the Czochralski method. Mg concentrations in grown crystals were analyzed by an inductively coupled plasma optical emission spectrometry (ICP‐OE/MS). The crystal structures were analyzed by the X‐ray powder diffraction (XRD), ultraviolet‐visible (UV‐Vis) absorption spectra and infrared (IR) transmitatance spectra. The photorefractive properties of crystals were experimentally studied by using two‐beam coupling. In this experiment we determined the writing time, maximum diffraction efficiency and the erasure time of crystals samples with He‐Ne laser. The results showed that the dynamic range (M/#), sensitivity (S) and diffraction efficiency (η) were dependent on the Mg doping concentration, and the Mg(4.58mol%):Ce:Cu:LiNbO3 crystal was the most proper holographic recording media material among the six crystals studied in the paper. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号