首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatially resolved X‐ray diffraction (SRXRD) is applied for micro‐imaging of strain in laterally modulated epitaxial structures. In GaAs layers grown by liquid phase epitaxial lateral overgrowth (ELO) on SiO2‐masked GaAs substrates a downward tilt of ELO wings caused by their interaction with the mask is observed. The distribution of the tilt magnitude across the wings width is determined with μm‐scale spatial resolution. This allows measuring of the shape of the lattice planes in individual ELO stripes. If a large area of the sample is studied the X‐ray imaging provides precise information on the tilt of an individual wing and its distribution. In heteroepitaxial GaSb/GaAs ELO layers local mosaicity in the wing area is found. By the SRXRD the size of microblocks and their relative misorientation were analyzed. Finally, the SRXRD technique was applied to study distribution of localized strain in AlGaN epilayers grown by MOVPE on bulk GaN substrates with AlN mask. X‐ray mapping proves that by mask patterning strain in AlGaN layer can be easily engineered, which opens a way to produce thicker, crack‐free AlGaN layers with a higher Al content needed in GaN‐based laser diodes. All these examples show that high spatial and angular resolutions offered by SRXRD makes the technique a powerful tool to study local lattice distortions in semiconductor microstructures. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We report the observation of ordering in Al0.3Ga0.7N as part of an epitaxial lateral overgrowth (ELO) of GaN carried out using (1 1 2¯ 2) GaN templates grown by metal-organic chemical vapor deposition on m-plane sapphire. Transmission electron microscopy showed that the crystalline quality of the ELO GaN was greatly improved when the ELO SiO2 mask was patterned along the [1 1 2¯ 0]sapphire direction. The ELO GaN wings had an inclined columnar shape with smooth (0 0 0 1) and (1 1 2¯ 0) facets. Layers of 1:1 [0 0 0 1] ordered a-plane Al0.3Ga0.7N were observed on the a-plane GaN facets by high-resolution transmission electron microscopy and high-angle annular-dark-field scanning transmission electron microscopy. However, no ordering was observed for c-plane Al0.3Ga0.7N layers grown at the same time on the c-plane GaN facets.  相似文献   

3.
Bulk GaN single crystals were grown using a solvent‐thermal method. They were grown for 200 h at 600 °C and 800 °C using 8 MPa of N2 gas and 1–3 mm sized pyramid GaN single crystals. Pure Na, NaN3 and Ca were used as the flux. The mole fraction of the [flux]/([flux] + [Ga]) was 0.30–0.67. The growth behavior differed according to the flux ratio. The quality of the bulk GaN single crystals was improved by increasing the flux ratio. The bulk GaN single crystals formed by spontaneous nucleation were deposited on the BN crucible wall and bottom during the first step of synthesis. The wurtzite structure of the GaN grown single crystal was confirmed by x‐ray diffration. The chemical composition was analyzed by electron probe microanalysis. The quality and optical properties of the GaN single crystal were examined by Raman spectroscopy and photoluminesence analysis. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Two-step selective epitaxy (SAG/ELO) of (1 1 2¯ 2)GaN on (1 1 3)Si substrate is studied to reduce the defect density in the epitaxial lateral overgrowth. The first SAG/ELO is to prepare a (1 1 2¯ 2)GaN template on a (1 1 3)Si and the second SAG/ELO is to get a uniform (1 1 2¯ 2)GaN. It is found that the reduction of the defect density is improved by optimizing the mask configuration in the second SAG/ELO. The minimum dark spot density obtained is 3×107/cm2, which is two orders of magnitude lower than that found in a (0 0 0 1)GaN grown on (1 1 1)Si.  相似文献   

5.
AlGaN growth using epitaxial lateral overgrowth (ELO) by metalorganic chemical vapor deposition on striped Ti, evaporated GaN on sapphire, has been investigated. AlGaN/AlN films growth on GaN/AlGaN superlattices (SLs) structure on the Ti masks, with various SLs growth temperature (1030, 1060 and 1090 °C) were grown. With increasing the growth temperature, AlGaN surface became flat. The AlGaN film had a cathodoluminescence peak around 345 nm. However, in secondary ion mass spectrometry (SIMS) measurement, Ti signal was detected on the top of AlGaN surface when GaN/AlGaN SLs was grown on Ti striped masks. By inserting the AlN blocking layer on SLs, Ti diffusion was stopped at the AlN layer, and the AlGaN crystalline quality was improved.  相似文献   

6.
Electrical properties, deep traps spectra and structural performance were studied for m-GaN films grown on m-SiC substrates by standard metalorganic chemical vapor deposition (MOCVD) and by MOCVD with lateral overgrowth (ELO) or sidewall lateral overgrowth (SELO). Standard MOCVD m-GaN films with a very high dislocation density over 109 cm−2 are semi-insulating n-type with the Fermi level pinned near Ec−0.7 eV when grown at high V/III ratio. For lower V/III they become more highly conducting, with the electrical properties still dominated by a high density (∼1016 cm−3) of Ec−0.6 eV electron traps. Lateral overgrowth that reduces the dislocation density by several orders of magnitude results in a marked increase in the uncompensated shallow donor density (∼1015 cm−3) and a substantial decrease of the density of major electron traps at Ec−0.25 and Ec−0.6 eV (down to about 1014 cm−3). Possible explanations are briefly discussed.  相似文献   

7.
《Journal of Crystal Growth》2007,298(2):113-120
Dislocation-free and strain-free GaN nanopillars, grown on Si by molecular beam epitaxy, were used as nanoseeds for a new form of epitaxial lateral overgrowth (ELO) by metalorganic vapour phase epitaxy (MOVPE) until full coalescence. Such overgrown GaN films are almost relaxed and were used as templates for producing thick GaN layers by halide vapour phase epitaxy (HVPE). The final GaN film is easily separated from the starting Si substrate. This is henceforth a new technology to produce freestanding GaN. The GaN crystal quality was assessed by transmission electron microscopy (TEM), photo- and cathodoluminescence (PL, CL). It was seen that the pillar-ELO is produced from a limited number of nanopillars. Some dislocations and basal stacking faults are formed during the coalescence. However, those that propagate parallel to the substrate do not replicate in the top layer and it is expected that the thickened material present a reduced defect density.  相似文献   

8.
GaN thin films have been grown on Si(1 1 1) substrates using an atomic layer deposition (ALD)-grown Al2O3 interlayer. This thin Al2O3 layer reduces strain in the subsequent GaN layer, leading to lower defect densities and improved material quality compared to GaN thin films grown by the same process on bare Si. XRD ω-scans showed a full width at half maximum (FWHM) of 549 arcsec for GaN grown on bare Si and a FWHM as low as 378 arcsec for GaN grown on Si using the ALD-grown Al2O3 interlayer. Raman spectroscopy was used to study the strain in these films in more detail, with the shift of the E2(high) mode showing a clear dependence of strain on Al2O3 interlayer thickness. This dependence of strain on Al2O3 thickness was also observed via the redshift of the near bandedge emission in room temperature photoluminescence (RT-PL) spectroscopy. The reduction in strain results in a significant reduction in both crack density and screw dislocation density compared to similar films grown on bare Si. Screw dislocation density of the films grown on Al2O3/Si substrates approaches that of typical GaN layers on sapphire. This work shows great promise for the use of oxide interlayers for growth of GaN-based LEDs on Si.  相似文献   

9.
Surface properties and the principal processes at the growth of gallium nitride on GaN (0001) face in ammonia‐based are modeled using DFT (density functional theory – SIESTA code) ab initio calculations and 2‐d diffusion analysis. The GaN growth methods are: ammonia‐source MBE, MOVPE, and also HVPE. The adiabatic trajectories, calculated for hydrogen‐rich and hydrogen‐free state of the GaN(0001) surface, include the adsorption of NH3, GaCl and HCl molecules and the desorption of Ga atoms. The adsorption of ammonia and GaCl has no energy barrier. Thus, in contrast to the results concerning Plasma‐Assisted Molecular Beam Epitaxy (PA MBE), proving that the GaN(0001) surface remains in metal‐rich state, these results indicate that, in the ammonia‐rich environment, typical for HVPE and MOVP growth, the GaN(0001) surface remains in the nitrogen‐rich state. In the case of HCl adsorption, the energy barrier depends on the surface coverage, and could reach 2.0 eV. The direct desorption of single Ga atom has the energy barrier, close to 7 eV. This indicates that Ga surface diffusion (growth controlling process) length is very large, leading to strong interaction of the step kinetics and the diffusion on the terraces. This interaction leads to double–step intertwined structures both in the case of dislocation‐mediated spiral growth and in the step flow growth mode. These morphologies, proposed by the geometric arguments, are observed in the atomic force microscopy (AFM) scans of the GaN(0001) surface. Additionally we have compared the interaction energy of two hydrogen atoms obtained in the DFT SIESTA and the high precision Gaussian in coupled cluster singles, double and perturbation triples CCSD(T) approximation. Both approaches yielded virtually identical interaction energy confirming the validity of DFT analysis of ammonia‐rich growth of GaN. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Raman scattering spectroscopy was utilized for investigation of the structural properties of thick GaN layers. These layers with thickness ∼ 40 μm have been grown by HVPE technique on the sapphire substrates. The investigations have been focused on the strain distribution in GaN layer cross‐section as a function of distance from an interface sapphire/GaN and mapping of the surface and of the inner layer, near the sapphire/GaN interface. From the observed phonon shifts in the Raman spectra strain differences lower than 6.4×10–4 corresponding to stress differences of 240 MPa were estimated across the thick GaN epitaxial layer. The measurements exhibit that strain in the layer causes changes in the Raman spectra and allow determining the relaxation process in the crystal. The obtained results confirmed, that the mode frequencies in the measured Raman spectra in both directions (parallel or perpendicular to the growth direction) for layer thicknesses over 30 µm are comparable with typical values for bulk material and match the low strain in the structure due to relaxation processes. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Ultra‐long GaN nanowires have been synthesized via a simple thermal evaporation process by heating mixed GaN and Ga2O3 powders in a conventional resistance furnace under ammonia gas at 1150 °C. The average length of GaN nanowires is estimated to be more than 100 μm after 30‐min growth, corresponding to a fast growth rate of more than 200 μm/h. Scanning electron microscope (SEM) observation indicated that the diameter of GaN nanowires was rather uniform along the growth direction and in the range of 100–200 nm. X‐ray diffraction (XRD) and transmission electron microscope (TEM) measurements confirmed that the GaN nanowires are crystalline wurtzite‐type hexagonal structure. Room‐temperature cathodoluminescence (CL) measurement indicated that an obvious red‐shift of the near band‐edge emission peak centered at 414 nm of the ultra‐long GaN nanowires and a wide shoulder in the range of 600–700 nm were observed. Possible reasons responsible for the red‐shift of the near band‐edge emission of the ultra‐long GaN nanowires was discussed. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The structure and properties of Czochralski (Cz)‐grown Ge1‐xSix mosaic crystals were investigated using optical microscopy, atomic force microscopy, X‐ray diffraction analysis, microprobe analysis, FTIR and transmission electron microscopy. The role of segregation, form of solid‐liquid interface and dislocation generation in the development of mosaic structure were analyzed and used for optimization of growth parameters such as Si concentration and growth rate. The dislocation density estimated experimentally was compared with the calculated data. Composition fluctuations caused by formation of cellular structure at the interface lead to a local lattice misorientation that is one of the reasons for crystal mosaicity. Model of mosaic structure generation in terms of dislocation density and composition variations is presented.  相似文献   

13.
Bulk single crystals and selectively grown gallium nitride (GaN) have been obtained using the sublimation technique. Crystals of size about 2–3 mm in length and 0.8–1.0 mm in width have been grown successfully. Atomic force microscopy has been employed to analyze the surface morphology of the as-grown samples to understand the growth mechanism. In free standing bulk GaN single crystals, two-dimensional growth is dominated by step growth mechanism. However, in the selective growth of GaN by sublimation, spiral growth originating from screw dislocation dominates.  相似文献   

14.
Epitaxial lateral overgrowth (ELO) is a suitable method which makes it possible to obtain thin layers for applications in the thin film solar cells technology. Due to the method it is possible to save the material which is used in production to make PV modules more economical. Moreover, an ELO layer is partly separated from the growth substrate by an SiO2 cover which prevents propagation of defects into the ELO layer from the substrate. It means that even poor quality silicon substrates can be used to fabricate good quality solar cells. Growing a continuous thin silicon layer on a specially prepared growth silicon substrate is the first step to obtain photovoltaic (PV) modules. The morphology as well as the layer quality and the density of defects depend on various factors: growth temperature, cooling rate, growth time, atmosphere, substrate type, etc. This work presents an analysis of silicon ELO layers growth in different conditions using a horizontal LPE setup. The results can be used to determine the best conditions of growth in order to obtain optimal Si layers for PV applications.  相似文献   

15.
This review article attempts to present a comprehensive picture of the progress in selective epitaxial growth (SEG) of cubic silicon carbide (3C-SiC) to make it a cheap and practical material for high temperature and high power, high frequency and MEMS (Micro Electromechanical Systems) applications. Selective epitaxial growth followed by epitaxial lateral overgrowth (ELO) is a suitable approach to minimize the interfacial defects and other planar defects in case of thin film growth. Different techniques of SEG and its application to Si, GaAs and III–V nitrides are reviewed briefly in the first section of this article. Various SEG techniques like epitaxial lateral overgrowth, pyramidal growth and pendeo epitaxial growth, etc. have been discussed extensively for growing 3C-SiC on Si, together with the characterization of the grown films. The influence of various experimental parameters such as temperature of growth, choice of mask material, influence of an etchant, pattern shape and size, etc. is also discussed. On the basis of these data, it is believed that SEG and related techniques are a promising approach for heteroepitaxial growth of 3C-SiC films useful for devices and MEMS applications.  相似文献   

16.
Single crystal growth of the organic nonlinear optical crystal, L‐arginine trifluoroacetate (L‐Arg·CF3COOH, abbreviated as LATF) is reported. Low temperature solution growth method is employed for the growth of bulk single crystals. The cell parameters are verified by single crystal diffraction. Fourier transform infrared (FT‐IR) and Fourier transform Raman analysis are used to confirm the presence of various functional groups in the grown crystal. The thermal properties of the grown crystals are studied by thermogravimetric analysis and differential scanning calorinetry analysis (TGA/DSC). Second harmonic generation (SHG) measurement confirms the NLO properties of the grown crystal. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
GaN nano‐ceramics were analyzed using transmission electron microscopy (TEM), showing that these ceramics are characterized by highly disoriented grains of the linear size of 100–150 nm. These GaN ceramics were used as substrates for GaN epitaxy in standard MOVPE conditions. For the comparison, MOVPE GaN layers on silicon substrates were grown using similar conditions. It is shown that MOVPE growth of GaN layers is highly anisotropic for both cases. However, the disorientation of the highly mismatched GaN layer on silicon is different from that characterizing GaN layer deposited on the ceramic substrate. In the latter case the disorientation is much higher, and three dimensional in nature, causing creation of polycrystalline structure having large number of the dislocations. In the case of the GaN layer grown on the silicon substrate the principal disorientation is due to rotation around c‐axis, causing creation of mosaic structure of edge dislocations. Additionally, it is shown that the typical grain size in AlN nucleation layer on Si is smaller, of order of 20 nm. These two factors contribute to pronounced differences in later stage of the growth of GaN layer on the ceramic. Due to high growth anisotropy an appropriately thick GaN layer can, eventually, develop flat surfaces suitable for construction of optoelectronic and electronic structures. As shown by the TEM data, this can be achieved only at the cost of creation of the relatively large density of dislocations and stacking faults. The latter defects were not observed for the GaN growth on Si substrates. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Alkali metals (Na, Rb or Cs) co‐doped with fiber‐ and bulk‐shaped KNbO3 single crystals were grown using two original methods by means of doping together of small ionic Na and large ionic Rb or Cs into KNbO3. Single‐phase crystals could be grown with an orthorhombic system at room temperature as well as pure KNbO3. Piezoelectric and ferroelectric property changes by the co‐doping of Rb or Cs with Na were estimated using d33 values and a polarization‐electric field hysteresis curve in fiber‐ and bulk‐shaped crystals. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The present status of the GaN bulk growth by High Pressure Solution (HPS) method and combination of HPS and Hydride Vapor Phase Epitaxy (HVPE) methods is reviewed. Up to now the spontaneous high pressure solution growth of GaN results in crystals having habit of hexagonal platelets of surface area of 3 cm2 or needles with length up to 1 cm. Recently, the platelets and needles have been used as seeds for the HVPE growth. On the other hand, the LPE technique under pressure with pressure‐grown GaN (hp‐GaN), GaN/sapphire template, patterned GaN/sapphire template and free standing HVPE GaN as seeds has been examined and developed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Structural properties of GaN epilayers on wet-etched protruding and recess-patterned sapphire substrates (PSSs) have been investigated in detail using high-resolution double-crystal X-ray diffraction (DCXRD) and etch-pit density methods. The DCXRD results reveal various dislocation configurations on both types of PSSs. The etch pits of GaN on the recess PSS exhibit a regular distribution, i.e. less etch pits or threading dislocation density (TDD) onto the recess area than those onto the sapphire mesas. On the contrary, an irregular distribution is observed for the etch pits of GaN on the protruding PSS. A higher crystal quality of the GaN epilayer grown onto the recess PSS can be achieved as compared with that onto the protruding PSS. These data reflect that the GaN epilayer on the recess PSS could be a better template for the second epitaxial lateral overgrowth (ELOG) of GaN. As a result, the GaN epilayers after the ELOG process display the TDDs of around ∼106 cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号