首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
In metal grains one of the most important failure mechanisms involves shear band localization. As the band width is small, the deformations are affected by material length scales. To study localization in single grains a rate-dependent crystal plasticity formulation for finite strains is presented for metals described by the reformulated Fleck–Hutchinson strain gradient plasticity theory. The theory is implemented numerically within a finite element framework using slip rate increments and displacement increments as state variables. The formulation reduces to the classical crystal plasticity theory in the absence of strain gradients. The model is used to study the effect of an internal material length scale on the localization of plastic flow in shear bands in a single crystal under plane strain tension. It is shown that the mesh sensitivity is removed when using the nonlocal material model considered. Furthermore, it is illustrated how different hardening functions affect the formation of shear bands.  相似文献   

2.
A strain-based transient-gradient damage model is used to analyse and describe the experimentally observed failure process in a Compact-Tension test carried out on short glass-fibre-reinforced polypropylene. Several aspects regarding the nonlocal character of the damage process in the material are emphasized and the intrinsic length scale is determined using available strain fields from an experimental analysis. A good agreement between theory and experiments has been found on a global and on a local level.  相似文献   

3.
Ⅱ型载荷作用下裂纹变形模式也为Ⅱ型的破坏问题称为真Ⅱ型破坏.准确定量地把握真Ⅱ型破坏的全过程是具有挑战性的问题.本文采用结构化变形驱动的非局部宏-微观损伤模型对真Ⅱ型破坏问题进行了模拟.根据结构化变形理论将点偶的非局部应变分解为弹性应变与结构化应变两部分,进而利用Cauchy-Born准则与结构化应变计算点偶的结构化正伸长量.在本文中,结构化应变取为非局部应变的偏量部分.当点偶的结构化正伸长量超过临界伸长量时,微细观损伤开始在点偶层次发展.将微细观损伤在作用域中进行加权求和得到拓扑损伤,并通过能量退化函数将其嵌入到连续介质-损伤力学框架中进行数值求解.进一步地,本文采用Gauss-Lobatto积分格式计算点偶的非局部应变,将积分点数目降低到4个,显著降低了前处理和非线性分析的计算成本.通过对Ⅱ型加载下裂尖应变场的分析揭示了采用偏应变作为结构化应变的原因.对两个典型真Ⅱ型破坏问题的模拟结果表明,本文方法不仅可以把握Ⅱ型加载下的真Ⅱ型裂纹扩展模式,同时可以定量刻画加载过程中的载荷-变形曲线,且不具有网格敏感性.最后指出了需要进一步研究的问题.  相似文献   

4.
Metallic materials display strong size effect when the characteristic length associated with plastic deformation is on the order of microns. This size effect cannot be explained by classical plasticity theories since their constitutive relations do not have an intrinsic material length. Strain gradient plasticity has been developed to extend continuum plasticity to the micron or submicron regime. One major issue in strain gradient plasticity is the determination of the intrinsic material length that scales with strain gradients, and several microbend test specimens have been designed for this purpose. We have studied different microbend test specimens using the theory of strain gradient plasticity. The pure bending specimen, cantilever beam, and the microbend test specimen developed by Stolken and Evans (Stolken, J.S., Evans, A.G., 1998. A microbend test method for measuring the plasticity length scale Acta Mater. 46, 5109–5115) are found suitable for the determination of intrinsic material length in strain gradient plasticity. However, the double cantilever beam (both ends clamped) is unsuitable since its deformation is dominated by axial stretching. The strain gradient effects significantly increase the bending stiffness of a microbend test specimen. The deflection of a 10-μm thick beam is only a few percent of that estimated by classical plasticity.  相似文献   

5.
The definition and magnitude of the intrinsic length scale are keys to the development of the gradient plasticity theory that incorporates size effects. However, a fixed value of the material length-scale is not always realistic and different problems could require different values. Moreover, a linear coupling between the local and nonlocal terms in the gradient plasticity theory is not always realistic and that different problems could require different couplings. This work addresses the proper modifications required for the full utility of the current gradient plasticity theories in solving the size effect problem. It is shown that the current gradient plasticity theories do not give sound interpretations of the size effects in micro-bending and micro-torsion tests if a definite and fixed length scale parameter is used. A generalized gradient plasticity model with a non-fixed length scale parameter is proposed based on dislocation mechanics. This model assesses the sensitivity of predictions to the way in which the local and nonlocal parts are coupled (or to the way in which the statically stored and geometrically necessary dislocations are coupled). In addition a physically-based relation for the length scale parameter as a function of the course of deformation and the material microstructural features is proposed. The proposed model gives good predictions of the size effect in micro-bending tests of thin films and micro-torsion tests of thin wires.  相似文献   

6.
We propose a nonlocal continuum model to describe the size-dependent superelastic responses observed in recent experiments of shape memory alloys. The modeling approach extends a superelasticity formulation based on the martensitic volume fraction, and combines it with gradient plasticity theories. Size effects are incorporated through two internal length scales, an energetic length scale and a dissipative length scale, which correspond to the gradient terms in the free energy and the dissipation, respectively. We also propose a computational framework based on a variational formulation to solve the coupled governing equations resulting from the nonlocal superelastic model. Within this framework, a robust and scalable algorithm is implemented for large scale three-dimensional problems. A numerical study of the grain boundary constraint effect shows that the model is able to capture the size-dependent stress hysteresis and strain hardening during the loading and unloading cycles in polycrystalline SMAs.  相似文献   

7.
基于热力学第一定律和非局部塑性理论,提出了一种求解应变局部化问题的非局部方法.对材料的每一点定义了局部和非局部两种状态空间,局部状态空间的内变量通过非局部权函数映射到非局部空间,成为非局部内变量.在应变软化过程中,局部状态空间中的塑性变形服从正交流动法则,材料的软化律在非局部状态空间中被引入.通过两个状态空间的塑性应变能耗散率的等效,得到了应变软化过程中明确定义的局部化区域以及其中的塑性应变分布.应用本方法导出了一维应变局部化问题的解析解.解析解表明,应变局部化区域的尺寸只与材料内尺度有关;对于高斯型非局部权函数,局部化区域的尺寸大约是材料内尺度的6倍.一维算例表明,局部化区域的塑性应变分布以及载荷-位移曲线仅与材料参数和结构几何尺寸有关,变形局部化区域的尺寸随着材料内尺度的减小而减小,同时塑性应变也随着材料内尺度的减小变得更加集中.当内尺度趋近于零时,应用本文方法得到的解与采用传统的局部塑性理论得到的解相同.  相似文献   

8.
Non-uniform plastic deformation of materials exhibits a strong size dependence when the material and deformation length scales are of the same order at micro- and nano-metre levels. Recent progresses in testing equipment and computational facilities enhancing further the study on material characterization at these levels confirmed the size effect phenomenon. It has been shown that at this length scale, the material constitutive condition involves not only the state of strain but also the strain gradient plasticity. In this study, C0 axisymmetric element incorporating the mechanism-based strain gradient plasticity is developed. Classical continuum plasticity approach taking into consideration Taylor dislocation model is adopted. As the length scale and strain gradient affect only the constitutive relation, it is unnecessary to introduce either additional model variables or higher order stress components. This results in the ease and convenience in the implementation. Additional computational efforts and resources required of the proposed approach as compared with conventional finite element analyses are minimal. Numerical results on indentation tests at micron and submicron levels confirm the necessity of including the mechanism-based strain gradient plasticity with appropriate inherent material length scale. It is also interesting to note that the material is hardened under Berkovich compared to conical indenters when plastic strain gradient is considered but softened otherwise.  相似文献   

9.
In the present research, the mechanical behavior of the surface-nanocrystalline aluminum (SNCA) is investigated through nanoindentation experiment and theoretical modeling. Firstly, through microscopical observation and measurement for the SNCA material, a microstructure cell model is developed. Secondly, based on the microstructure cell model and the strain gradient plasticity theory, and based on introducing a parameter accounting for the grain size nonuniformity effect, the discrete features of the hardness–depth relations of the SNCA material are described. The “U-type” feature of the hardness–depth experimental curves is modeled and simulated. Thirdly, in the SNCA material the mechanical property of the grain boundary, i.e., the strength of plastic zone penetrating the grain boundary is characterized by introducing a criterion parameter, the critical effective plastic strain. The “waterfall-type” feature of the hardness–depth curves is modeled and simulated. It is worth pointing out that, in the present study, the length scale parameter in the strain gradient plasticity theory is taken as a universal material parameter instead of a simulation parameter, and it is determined through applying the strain gradient plasticity theory to the modeling of the corresponding single crystal aluminum.  相似文献   

10.
The paper deals with a consistent and systematic general framework for the development of anisotropic continuum damage in ductile metals based on thermodynamic laws and nonlocal theories. The proposed model relies on finite strain kinematics based on the consideration of damaged as well as fictitious undamaged configurations related via metric transformation tensors which allow for the interpretation of damage tensors. The formulation is accomplished by rate-independent plasticity using a nonlocal yield condition of Drucker–Prager type, anisotropic damage based on a nonlocal damage growth criterion as well as non-associated flow and damage rules. The nonlocal theory of inelastic continua is established to be able to take into account long-range microstructural interaction. The approach incorporates macroscopic interstate variables and their higher-order gradients which properly describe the change in the internal structure and investigate the size effect of statistical inhomogeneity of the heterogeneous material. The idea of bridging length-scales is made by using higher-order gradients in the evolution equations of the equivalent inelastic strain measures which leads to a system of elliptic partial differential equations which is solved using the finite difference method at each iteration of the loading step and the displacement-based finite element procedure is governed by the standard principle of virtual work. Numerical simulations of the elastic–plastic deformation behavior of damaged solids demonstrate the efficiency of the formulation. Tension tests undergoing large strains are used to investigate the damage growth in high strength steel. The influence of various model parameters on the prediction of the deformation and localization of ductile metals is discussed.  相似文献   

11.
In this paper, a novel size-dependent functionally graded(FG) cylindrical shell model is developed based on the nonlocal strain gradient theory in conjunction with the Gurtin-Murdoch surface elasticity theory. The new model containing a nonlocal parameter, a material length scale parameter, and several surface elastic constants can capture three typical types of size effects simultaneously, which are the nonlocal stress effect, the strain gradient effect, and the surface energy effects. With the help of Hamilton's principle and first-order shear deformation theory, the non-classical governing equations and related boundary conditions are derived. By using the proposed model, the free vibration problem of FG cylindrical nanoshells with material properties varying continuously through the thickness according to a power-law distribution is analytically solved, and the closed-form solutions for natural frequencies under various boundary conditions are obtained. After verifying the reliability of the proposed model and analytical method by comparing the degenerated results with those available in the literature, the influences of nonlocal parameter, material length scale parameter, power-law index, radius-to-thickness ratio, length-to-radius ratio, and surface effects on the vibration characteristic of functionally graded cylindrical nanoshells are examined in detail.  相似文献   

12.
A model for high temperature creep of single crystal superalloys is developed, which includes constitutive laws for nonlocal damage and viscoplasticity. It is based on a variational formulation, employing potentials for free energy, and dissipation originating from plasticity and damage. Evolution equations for plastic strain and damage variables are derived from the well-established minimum principle for the dissipation potential. The model is capable of describing the different stages of creep in a unified way. Plastic deformation in superalloys incorporates the evolution of dislocation densities of the different phases present. It results in a time dependence of the creep rate in primary and secondary creep. Tertiary creep is taken into account by introducing local and nonlocal damage. Herein, the nonlocal one is included in order to model strain localization as well as to remove mesh dependence of finite element calculations. Numerical results and comparisons with experimental data of the single crystal superalloy LEK94 are shown.  相似文献   

13.
A nonlocal elastic–plastic material model is used to show that the rate of void growth is significantly reduced when the voids are small enough to be comparable with a characteristic material length. For a very small void in the material between much larger voids the competition between an increased growth rate due to the stress concentrations around the larger voids and a reduced growth rate due to the nonlocal effects is studied. The analyses are based on an axisymmetric unit cell model with special boundary conditions, which allow for a relatively simple investigation of a full three dimensional array of spherical voids. It is shown that the high growth rate of very small voids predicted by conventional plasticity theory is not realistic when the effect of a characteristic length, dependent on the dislocation structure, is accounted for.  相似文献   

14.
Microstructural length scales are relatively large in typical soldered connections. A microstructure which is continuously evolving is known to have a strong influence on damage initiation and propagation in solder materials. In order to make accurate lifetime predictions by numerical simulations, it is therefore necessary to take the microstructural evolution into account. In this work this is accomplished by using a diffuse interface model incorporating a strongly nonlocal variable. It is presented as an extension of the Cahn-Hilliard model, which is weakly nonlocal since it depends on higher order gradients which are by definition confined to the infinitesimal neighbourhood of the considered material point. Next to introducing a truly nonlocal measure in the free energy, this nonlocal formulation has the advantage that it is numerically more efficient. Additionally, the model is extended to include the elastically stored energy as a driving force for diffusion after which the entire system is solved using the finite element approach. The model results in a computational efficient algorithm which is capable of simulating the phase separation and coarsening of a solder material caused by combined thermal and mechanical loading.  相似文献   

15.
通过求解一个第二类Fredholm方程,得到了基于非局部塑性软化模型的应变局部化问题理论解,结果表明,只有在当采用过非局部修正形式的非局部塑性软化模型才能得到应变局部化解,且得到的塑性应变分布和荷载响应依赖于所引入的特征长度及过非局部权参数。通过一维应变局部化有限元数值解,验证了非局部理论的引入能克服计算结果的网格敏感...  相似文献   

16.
An improved gradient-enhanced approach for softening elasto-plasticity is proposed, which in essence is fully nonlocal, i.e. an equivalent integral nonlocal format exists. The method utilises a nonlocal field variable in its constitutive framework, but in contrast to the integral models computes this nonlocal field with a gradient formulation. This formulation is considered ‘implicit’ in the sense that it strictly incorporates the higher-order gradients of the local field variable indirectly, unlike the common (explicit) gradient approaches. Furthermore, this implicit gradient formulation constitutes an additional partial differential equation (PDE) of the Helmholtz type, which is solved in a coupled fashion with the standard equilibrium condition. Such an approach is particularly advantageous since it combines the long-range interactions of an integral (nonlocal) model with the computational efficiency of a gradient formulation. Although these implicit gradient approaches have been successfully applied within damage mechanics, e.g. for quasi-brittle materials, the first attempts were deficient for plasticity. On the basis of a thorough comparison of the gradient-enhancements for plasticity and damage this paper rephrases the problem, which leads to a formulation that overcomes most reported problems. The two-dimensional finite element implementation for geometrically linear plain strain problems is presented. One- and two-dimensional numerical examples demonstrate the ability of this method to numerically model irreversible deformations, accompanied by the intense localisation of deformation and softening up to complete failure.  相似文献   

17.
In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational approach. Two additional kinds of parameters, the higher-order nonlocal parameters and the nonlocal gradient length coefficients are introduced to account for the size-dependent characteristics of nonlocal gradient materials at nanoscale. To illustrate its application values, the theory is applied for wave propagation in a nonlocal strain gradient system and the new dispersion relations derived are presented through examples for wave propagating in Euler–Bernoulli and Timoshenko nanobeams. The numerical results based on the new nonlocal strain gradient theory reveal some new findings with respect to lattice dynamics and wave propagation experiment that could not be matched by both the classical nonlocal stress model and the contemporary strain gradient theory. Thus, this higher-order nonlocal strain gradient model provides an explanation to some observations in the classical and nonlocal stress theories as well as the strain gradient theory in these aspects.  相似文献   

18.
In the present paper, a kind of stochastic damage hysteretic model is proposed to describe the damage and hysteretic behaviors of concrete material. According to the model, a parallel system made up of micro-elements, which are developed based on the micro-tensile and shear damage mechanism respectively, is adopted to obtain the overall responses of concrete. The influence of plastic strain and hysteretic energy dissipation of the material are also considered in the model. To reflect the stochastic properties of concrete, the fracture strain of the micro-element is set as a random variable. Then the monotonic, loading and unloading curves of the parallel system are derived analytically by averaging the stochastic micro-elements and two hysteretic rules are combined to the proposed model to account for complicated loading conditions. Furthermore, a nonlocal process is introduced to the model to overcome the mesh dependence issues of softening materials. Finally, several numerical examples are conducted, demonstrating that the proposed model can provide reliable results reflecting the damage, plasticity and hysteretic behaviors of concrete material.  相似文献   

19.
20.
The paper shows that spectral wave propagation analysis reveals in a simple and clear manner the effectiveness of various regularization techniques for softening materials, i.e., materials for which the yield limits soften as a function of the total strain. Both plasticity and damage models are considered. It is verified analytically in a simple way that the nonlocal integral-type model with degrading yield limit depending on the total strain works correctly if and only one adopts an unconventional nonlocal formulation introduced in 1994 by Vermeer and Brinkgreve (and in 1996 by Planas, and by Strömberg and Ristinmaa), which is here called, for the sake of brevity, ‘over-nonlocal’ because it uses a linear combination of local and nonlocal variables in which a negative weight imposed on the local variable is compensated by assigning to the nonlocal variable weight greater than 1 (this is equivalent to a nonlocal variable with a smooth positive weight function of total weight greater than 1, normalized by superposing a negative delta-function spike at the center). The spectral approach readily confirms that the nonlocal integral-type generalization of softening plasticity with an additive format gives correct localization properties only if an over-nonlocal formulation is adopted. By contrast, the nonlocal integral-type generalization of softening plasticity with a multiplicative format provides realistic localization behavior, just like the nonlocal integral-type damage model, and thus does not necessitate an over-nonlocal formulation. The localization behavior of explicit and implicit gradient-type models is also analyzed. A simple analysis shows that plasticity and damage models with gradient-type localization limiter, whether explicit or implicit, have very different localization behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号