首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Two-phase flows of boiling water and steam in geothermal reservoirs satisfy a pair of conservation equations for mass and energy which can be combined to yield a hyperbolic wave equation for liquid saturation changes. Recent work has established that in the absence of conduction, the geothermal saturation equation is, under certain conditions, asymptotically identical with the Buckley-Leverett equation of oil recovery theory. Here we summarise this work and show that it may be extended to include conduction. In addition we show that the geothermal saturation wave speed is under all conditions formally identical with the Buckley-Leverett wave speed when the latter is written as the saturation derivative of a volumetric flow.Roman Letters C(P, S,q) geothermal saturation wave speed [ms–1] (14) - c t (P, S) two-phase compressibility [Pa–1] (10) - D(P, S) diffusivity [m s–2] (8) - E(P, S) energy density accumulation [J m–3] (3) - g gravitational acceleration (positive downwards) [ms–2] - h w (P),h w (P) specific enthalpies [J kg–1] - J M (P, S,P) mass flow [kg m–2 s–1] (5) - J E (P, S,P) energy flow [J m–2s–1] (5) - k absolute permeability (constant) [m2] - k w (S),k s (S) relative permeabilities of liquid and vapour phases - K formation thermal conductivity (constant) [Wm–1 K–1] - L lower sheetC<0 in flow plane - m, c gradient and intercept - M(P, S) mass density accumulation [kg m–3] (3) - O flow plane origin - P(x,t) pressure (primary dependent variable) [Pa] - q volume flow [ms–1] (6) - S(x, t) liquid saturation (primary dependent variable) - S *(x,t) normalised saturation (Appendix) - t time (primary independent variable) [s] - T temperature (degrees Kelvin) [K] - T sat(P) saturation line temperature [K] - TdT sat/dP saturation line temperature derivative [K Pa–1] (4) - T c ,T D convective and diffusive time constants [s] - u w (P),u s (P),u r (P) specific internal energies [J kg–1] - U upper sheetC > 0 in flow plane - U(x,t) shock velocity [m s–1] - x spatial position (primary independent variable) [m] - X representative length - x, y flow plane coordinates - z depth variable (+z vertically downwards) [m] Greek Letters P , S remainder terms [Pa s–1], [s–1] - double-valued saturation region in the flow plane - h =h s h w latent heat [J kg–1] - = w s density difference [kg m–3] - line envelope - =D K /D 0 diffusivity ratio - porosity (constant) - w (P), s (P), t (P, S) dynamic viscosities [Pa s] - v w (P),v s (P) kinematic viscosities [m2s–1] - v 0 =kh/KT kinematic viscosity constant [m2 s–1] - 0 =v 0 dynamic viscosity constant [m2 s–1] - w (P), s (P) density [kg m–3] Suffixes r rock matrix - s steam (vapour) - w water (liquid) - t total - av average - 0 without conduction - K with conduction  相似文献   

2.
IntroductionInthispaper,weshallconsiderthefollowingsingularboundaryvalueproblems (BVP)u″ g(t)f(u) =0 ,   0 <t<1 ,αu(0 ) -βu′(0 ) =0 ,  γu(1 ) δu′(1 ) =0 ,(1 )whereα ,β,γ ,δ≥ 0 ,ρ:=βγ αγ αδ>0 ,f∈C([0 ,∞ ) ,[0 ,∞ ) ) ,gmaybesingularatt=0and/ort=1 .Thisproblemarisesnaturallyinthestudyofradiallysymmet…  相似文献   

3.
We provide some new necessary and sufficient conditions for regular isotropic rank-one convex functions on M 2 +={2×2 matrices such that det M0}. It is well known that isotropic functions W (M) can be written as W (M)=G(1, 2) where i are the singular values of M. One of these conditions allows us to understand better the gap between the rank-one convexity and the quasiconvexity.  相似文献   

4.
The analysis of the rotation of a ferromagnetic ellipsoid suspended in a Newtonian fluid and subjected to a uniform magnetic field is extended to include a long, slender cylindrical fiber which is magnetically saturated. Experimental observations of rotating nickel cylinders with aspect ratiosL/D ranging from 5 to 40 agree with the theoretical predictions that: (1) the proper magnetoviscous time constant for the motion is MV = s/µ 0 M s 2 , (2) larger fiber aspect ratios result in considerably longer orientation times; and (3) the strength of the applied external field has only a slight effect on the overall fiber rotation, and has no effect on the maximum angular velocity achieved. Quantitative agreement of theory and experiments is obtained for fibers withL/D 20; for the shorter fibers, the theory tends to overpredict the fiber rotation rate by as much as 30%. D diameter of the cylinder - D P (r) position-dependent demagnetization tensor, implicitly defined in eq. (2.5) - D xx,D yy,D zz volume-averaged demagnetizing factors for an ellipsoid equivalent to a uniformly magnetized cylinder, defined in eq. (2.6) - H i ;H i magnetic field inside a ferromagnetic body; magnitude ofH i - H 0;H 0 magnetic field applied by external sources; magnitude ofH 0 - k geometric parameter in the hydrodynamic resistance of a body rotating in a Newtonian fluid, eq. (2.2) - L length of the cylinder - L (h);L z (h) hydrodynamic torque exerted on a rotating body; thez-component ofL (h) on the cylinder - L (m);L z (m) magnetic torque exerted on a magnetic body in a magnetic field, eq. (2.4); thez-component ofL (m) on the cylinder - M the magnetization of a magnetic material - M s the saturation magnitude ofM, approached by all ferromagnetic materials asH i becomes large - r position vector of a point within a ferromagnetic body - V volume of a magnetic particle - x, y, z rectangular coordinate axes fixed in the cylinder according to figure 1 - angle of inclination of the axis of the cylinder with respect toH 0 - shear rate - small parameter of slender body theory,=1/ln (2L/D) - s constant viscosity of the suspending fluid - µ 0 the magnetic permeability of free space,µ 0=4 · 10–7 H/m - MV the magnetoviscous time constant, a characteristic time for a process involving a competition of viscous and magnetic stresses - 1 the first normal-stress coefficient - ; z angular velocity of a rotating body; angular velocity of a cylinder about thez-axis, z =– d/dt  相似文献   

5.
The objective of this paper is the study of the dynamics of damped cable systems, which are suspended in space, and their resonance characteristics. Of interest is the study of the nonlinear behavior of large amplitude forced vibrations in three dimensions. As a first-order nonlinear problem the forced oscillations of a system having three-degrees-of-freedom with quadratic nonlinearities is developed in order to consider the resonance characteristics of the cable and the possibility of dynamic instability. The cables are acted upon by their own weight in the perpendicular direction and a steady horizontal wind. The vibrations take place about the static position of the cables as determined by the nonlinear equilibrium equations. Preliminary to the nonlinear analysis the linear mode shapes and frequencies are determined. These mode shapes are used as coordinate functions to form weak solutions of the nonlinear autonomous partial differential equations.In order to investigate the behavior of the cable motion in detail, the linear and the nonlinear analyses are discussed separately. The first part of this paper deals with the solution to the self adjoint boundary-value problem for small-amplitude vibrations and the determination of mode shapes and natural frequencies. The second problem dealt with in this paper is the determination of the phenomena produced by the primary resonance of the system. The method of multiple time scales is used to develop solutions for the resulting multi-dimensional dynamical system with quadratic nonlinearity.Numerical results for the steady state response amplitude, and their variation with external excitation and external detuning for various values of internal detuning parameters are obtained. Saturation and jump phenomena are also observed. The jump phenomenon occurs when there are multi-valued solutions and there exists a variation of kinetic energy among solutions.Notation A=diag(a i ,i=1, 2, 3) amplitude matrix (diagonal) - A n,A undeformed area, deformed area - B span of hanging cables - D sag for static conditions - E Young's modulus - vector of external force - diagonal matrix - symmetric coefficient matrix - H * =HR I unit matrix - diagonal matrix - L original length of cables before hanging - M the symmetric stiffness matrix - N integer - P damping constant matrix (diagonal) - R linear mode shape matrix (diagonal) - S sway of hanging cables - T tension of cables - T o tension of cables for static conditions - T o(0) tension of the lowest point for static conditions - V eigenfunction matrix - b=y T R coefficient vector - b - c,c 1,c 2,c 3 vector, and the components in thex 1,x 2,x 3 directions respectively, in terms of cosine functions. - e, e o strain, and static strain of elongation - e 1 time-dependent perturbation ine - f wind force in the sway direction - f, f 0,f 1 vector of external force - g gravity constant - h time-dependent amplitude vector - m mass density per unit length of the undeformed cable - r=(R 1,R 2,R 3) T vector of modal shapes - s undeformed arc length - t time - u 1 linear scalar in z - u 2 quadratic scalar in z - v 1,v 2,v 3 eigenfunctions inx 1,x 2, andx 3 directions, respectively - x=(x 1,x 2,x 3) T Cartesian position vector and components - y=(y 1,y 2,y 3) T static position vector and components - error vector - matrix operator - =diag[1, 2, 3] internal frequency matrix and components - excitation frequency - global matrix of coordinate functions - T o(0)/mgL - mgL/EA o - yy T - s/L - = diag[1, 2, 3] phase angle matrix and components of characteristic modes - phase angle of excitation force - 1, 2 time-dependent amplitude vectors in timet o and timet 1 - ij,i=1, 2...N,j=1, 2, 3 theith coordinate function of thejth component - i = diag[i1, i2, i3] theith matrix of coordinate functions - global vector of modal amplitudes - 1 external detuning parameter - i,i=2, 3 internal detuning parameter - i,i=1, 2, 3 phase angles  相似文献   

6.
We present an elementary proof of an important result of Y. Brenier [Br1, Br2], namely, that vector fields in d satisfying a nondegeneracy condition admit the polar factorization (*) u(x)=(s(x)), where is a convex function and s is a measure-preserving mapping. Brenier solves a minimization problem using Monge-Kantorovich theory; whereas we turn our attention to a dual problem, whose Euler-Lagrange equation turns out to be (*).  相似文献   

7.
Zusammenfassung Es wird gezeigt, daß man nichtlineare Transportkoeffizienten aus Potentialprofilmessungen auch ohne die Lösung der nichtlinearen Transportgleichung bestimmen kann. Die Methode wird auf zwei Ziegeltone angewendet, deren Feuchtigkeitsdiffusionskoeffizienten recht komplizierte Funktionen des Feuchtegehaltes sind. Die Ergebnisse werden mit den Ergebnissen aus einer numerischen Lösung für einen empirischen Ansatz nach Fujita verglichen.
A method for evaluation of conductive properties in nonlinear transport phenomena
A prediction procedure for the conductive properties based upon the measured data on potential field has been developed. The method is particularly related to the nonlinear phenomena when the analytical solution is not available. The approach proposed is applied to the determination of the moisture diffusivity for two kinds of brick clay that posses a pronounced dependance of properties on moisture content. The results are used for Fujita's numerical solution which is compared with measured moisture field. The comparison has been performed and an agreement was found.

Bezeichnungen u [kgw/kgs] Feuchtigkeit bezogen auf trockene Substanz - w [kgw/kgs] nach Gl. (10) - V allgemeines Potential - s, so [kgs/m3] Dichte des trockenen Skeletts - D, D0 [m2/s] isotherme Feuchteleitkoeffizient; Diffusionskoeffizient - x [m] Koordinate längs Zylinder - , 0 [s] Zeit - Jw [kgw /m2s] Feuchtestrom - , Koeffizienten der allgemeinen Leitungsgleichung (4) - A, B, Konstanten der Gl. (6) - , Konstanten der Gl. (7) auch der Gl. (12) - d [m] Zylinderdurchmesser - PE Petrovaradin - SK Sremski Karlovci  相似文献   

8.
Representations of Galerkin type are obtained for the displacement vector, polarization vector and the potential fields in the static plane theory of elastic dielectrics using the method of associated matrices. Fundamental matrix solutions of an infinite elastic dielectric plane subjected to a concentrated body force, electric force and charge density are derived from the singular solutions of harmonic, biharmonic and Helmholtz equations. Using boundary operatorsY, Z, M, the fundamental matrix solutions, and Betti's formulae, a matrix (x, y) is constructed and an integral representation for (u 1,u 2,P 1,P 2, ) is obtained. Discontinuity theorems are stated for the double layer potential andQ operator of the single layer potential. By means of these theorems, the solutions of interior and exterior boundary value problems are reduced to the solution of a system of five singular integral equations. The index of one of the systems is shown to be zero and it is concluded that Fredholm theorems and its alternatives hold.
Zusammenfassung Durch Anwendung der Assoziativ-Matrizen-Methode werden Galerkinische Darstellungen für den Verschiebungsvektor, den Polarisierungsvektor und die potentiellen Prüffelder einer statischen ebenen Theorie des elastischen Dielektrikums entwickelt. Von den singulären Lösungen der harmonischen, biharmonischen und Helmholtz-Gleichungen werden grundlegende Matrizenlösungen für das unendliche, ebene und elastische Dielektrikum, das durch konzentrierte Raumkräfte, elektrische Kräfte und Ladungsdichte beansprucht wird, abgeleitet. Unter Verwendung der Randwert-OperatorenY, Z, M, der grundlegenden Matrizen-Lösungen und Betti's Formel, wird eine Spezial-Matrize (x, y) konstruiert und eine Integraldarstellung für (u 1,u 2,P 1,P 2, ) erhalten. Unstetigkeitssätze werden für das Doppelschicht-Potential und denQ-Operator eines einschichtigen Potentials angeführt. Durch Anwendung dieser Sätze werden die Lösungen der inneren und äusseren Grenzwertprobleme zur Lösung eines Systems von fünf singulären Integralgleichungen reduziert. Der Index eines der Systeme wird als Null bewiesen und es wird die Schlussfolgerung gezogen, dass der Fredholmsche Satz und seine Alternativen fur diese Theorie anwendbar sind.
  相似文献   

9.
A method by which the transport of anisotropic radiative multiple scattering can be predicted is developed in this paper. A one-dimensional integral intensity model and a three-dimensional diffusion intensity model are both constructed. The former provides a closed-form solution, while the latter involves successive approximation and Gauss's quadrature. On the basis of these methods, the reflection and transmission of solar radiation in a homogeneous cloud layer are computed. The results differ from those for isotropic and Rayleigh scattering assumptions and illustrate the effects on transmission and reflectivity of optical thickness, wavelength, incidence angle, and albedo of single scattering.Nomenclature D + transmitted diffusion radiation intensity [W/cm2 sr · m] - D reflected diffusion radiation intensity [W/cm2 sr · m] - I pencil of radiation or specific intensity [W/cm2 sr · m] - I 0 solar irradiance [W/cm2] - K extinction cross-section or total cross-section, + - s (u, ), unit scattered radiation vector - s 0 (u 0, 0), unit incident radiation vector - t optical thickness - u cosine of the viewing angle, , which is measured from the vertical - u 0 cosine of the angle of incident, 0, which is measured from the vertical - absorption cross-section - scattering function - absorption coefficient - scattering angle, s · s 0 - scattering cross-section - scattered azimuthal angle - 0 incident azimuthal angle - a sphere - a solid angle - 0 albedo of single scattering,   相似文献   

10.
The molecular theory of Doi has been used as a framework to characterize the rheological behavior of polymeric liquid crystals at the low deformation rates for which it was derived, and an appropriate extension for high deformation rates is presented. The essential physics behind the Doi formulation has, however, been retained in its entirety. The resulting four-parameter equation enables prediction of the shearing behavior at low and high deformation rates, of the stress in extensional flows, of the isotropic-anisotropic phase transition and of the molecular orientation. Extensional data over nearly three decades of elongation rate (10–2–101) and shearing data over six decades of shear rate (10–2–104) have been correlated using this analysis. Experimental data are presented for both homogeneous and inhomogeneous shearing stress fields. For the latter, a 20-fold range of capillary tube diameters has been employed and no effects of system geometry or the inhomogeneity of the flow-field are observed. Such an independence of the rheological properties from these effects does not occur for low molecular weight liquid crystals and this is, perhaps, the first time this has been reported for polymeric lyotropic liquid crystals; the physical basis for this major difference is discussed briefly. A Semi-empirical constant in eq. (18), N/m2 - c rod concentration, rods/m3 - c * critical rod concentration at which the isotropic phase becomes unstable, rods/m3 - C interaction potential in the Doi theory defined in eq. (3) - d rod diameter, m - D semi-empirical constant in eq. (19), s–1 - D r lumped rotational diffusivity defined in eq. (4), s–1 - rotational diffusivity of rods in a concentrated (liquid crystalline) system, s–1 - D ro rotational diffusivity of a dilute solution of rods, s–1 - f distribution function defining rod orientation - F tensorial term in the Doi theory defined in eq. (7) (or eq. (19)), s–1 - G tensorial term in the Doi theory defined in eq. (8) - K B Boltzmann constant, 1.38 × 10–23 J/K-molecule - L rod length, m - S scalar order parameter - S tensor order parameter defined in eq. (5) - t time, s - T absolute temperature, K - u unit vector describing the orientation of an individual rod - rate of change ofu due to macroscopic flow, s–1 - v fluid velocity vector, m/s - v velocity gradient tensor defined in eq. (9), s–1 - V mean field (aligning) potential defined in eq. (2) - x coordinate direction, m - Kronecker delta (= 0 if = 1 if = ) - r ratio of viscosity of suspension to that of the solvent at the same shear stress - s solvent viscosity, Pa · s - * viscosity at the critical concentrationc *, Pa · s - v 1, v2 numerical factors in eqs. (3) and (4), respectively - deviatoric stress tensor, N/m2 - volume fraction of rods - 0 constant in eq. (16) - * volume fraction of rods at the critical concentrationc * - average over the distribution functionf(u, t) (= d 2u f(u, t)) - gradient operator - d 2u integral over the surface of the sphere (|u| = 1)  相似文献   

11.
The effective permeability of a heterogeneous porous medium   总被引:5,自引:0,他引:5  
The effective (single-phase) permeability of an (infinite) heterogeneous porous medium is studied using a formalism of Green's functions. We give formal expressions for it in the form of a series expansion involving the microscopic random-permeability field many-body correlation functions of higher and higher order.The particular case of a log-normal medium of infinite extent is studied using field-theoretical methods. Using partial series resummation techniques, we derivea formula up to all orders in the local correlations which was first reckoned by many authors by means of a first-order calculation. The formula — which remains an approximation — works whatever the dimensionality of the space, and gives the following simple estimate for the effective permeability in 3 D:K eff=k 1/33. The method is general and the approximations can be systematically improved on when more complex situations are studied.Roman Letters D number of dimensions of the space in which the flow takes place - f(r) body force field,N - f(q) Fourier-transformed body-force field, Nm3 - G 0(r, r) Green's function of the Laplace operator, m–1 - g(k,r, r) velocity propagator before averaging, m–1 - G(r, r) velocity propagator after averaging, m–1 - j(r) a scalar dimensionless field - k(r) local value of the permeability at point r, m2 - K eff effective permeability - K g geometric average of the local permeability, m2 - l typical size of the averaging volume, m - L characteristic length of the porous medium or of the reservoir, m - L(r, r) projection operator, m–2 - M(r, r) scattering operator, m–3 - p(r) local value of the pressure, Nm–2 - p(k,r, r) pressure propagator before averaging, m–1 - P(r, r) pressure propagator after averaging, m–1 - r position vector, m - r modulus of vectorr, m - unit vector pointing in the direction ofr - q Fourier wave vector, m–1 - q modulus of the Fourier wave-vectorq, m–1 - unit vector pointing in the direction ofq - projector over vector - 1 unit tensor - X(r) a local random variable - ¯X(r) volume averaged local random variable - X (r) ensemble averaged local random variable - V large-scale averaging volume, m3 - Z(j) generating functional of a random field - Z(r,j) modified generating functional of a random field - Z normalization factor Greek Letters 0 average value of the logarithm of the permeability - (r) fluctuation of the logarithm of permeability at pointr - viscosity of the fluid, Nt/m2 - (r–r) two-point correlation function of the fluctuations of the logarithm of the permeability - k correlation length of the permeability correlation function, m - u correlation length of the velocity correlation function, m  相似文献   

12.
The focus of the present work is directed towards the development of an effective reduced basis technique for calculating the sensitivity of the non-linear dynamic structural response of mechanical systems with respect to variations in the design variables.The proposed methodology is formulated within the context of a mixed space-time finite element method, which naturally allows the treatment of initial and boundary value problems. The time dependency of the solutions is implied in the assumed space-time modal shapes, and hence the partial differential equations of motion are directly reduced to a set of non-linear simultaneous equations of a purely algebraic nature.The independent field variables are approximated in terms of perturbations modes or path derivatives with respect to a load control parameter. These modes, extracting information about the kinematic and dynamic behavior of the structural system through the higher order derivatives of the strain and kinetic energies, are appropriate bases for non-linear dynamic problems. The sensitivity derivatives of the field variables are then approximated using a combination of perturbation modes and of their sensitivity derivatives.The resulting computational procedure offers high potential for the effective and numerically efficient sensitivity analysis of dynamic systems exhibiting periodic-in-time response. The proposed methodology is illustrated addressing non-linear beam problems subjected to harmonic loading and the results obtained are compared with those of a full finite-element model.Nomenclature (O, I i), (is1, 2, 3) Inertial frame of origin O - (P, s i), (is1, 2, 3) Local frame in the undeformed configuration - (Q, s i *), (is1, 2, 3) Local frame in the deformed configuration - t Time - l Abscissa along the beam reference line - L Beam length - (·)s(·)/t Partial derivative with respect to time - (·)s(·)/l Partial derivative with respect to space - u Position vector of the beam reference line - r Rotation parameters - ds(u, r) Generalized displacement vector - R(r) Rotation tensor associated with r - (r) Tensor defined in equations (4) and (5) - s· Finite rotation vector - as(a s, a v) Conformal rotation vector - Angular velocity - ws(u, ) Generalized velocity vector - k Curvature - e Generalized strains - ps(h, l) Generalized momenta - fs(s, m) Generalized sectional stress resultants - f es(S e, m e) Applied external loads - M Inertia tensor  相似文献   

13.
The paper presents an approach for modeling polymer flows with non-slip, slip and changing non-slip — slip boundary conditions at the wall. The model consists of a viscoelastic constitutive equation for polymer flows in the bulk, prediction of the transition from non-slip to sliding boundary conditions, a wall slip model, and a model for the compressibility effects in capillary polymer flows. The bulk viscoelastic constitutive equation contains a hardening parameter which is solely determined by the polymer molecular characteristics. It delimits the conditions for the onset of solid, rubber-like behavior. The non-monotone wall slip model introduced for polymer melts, modifies a slip model derived from a simple stochastic model of interface molecular dynamics for cross-linked elastomers. The predictions for the onset of spurt, as well as the numerical simulations of hysteresis, spurt, and stress oscillations are demonstrated. They are also compared with available data for a high molecular weight, narrow distributed polyisoprene. By using this model beyond the critical conditions, many of the qualitative features of the spurt and oscillations observed in capillary and Couette flows of molten polymers, are described.Notations upper convected derivative of elastic strain tensor - f, fm, fmin dimensionless (sliding) shear friction characteristics, and its maximum and minimum - G Hookean elastic modulus - Gp plateau modulus - G, G storage and loss moduli - I1, I2 first and second invariant of strain tensor - I1, I0 capillary and barrel lengths - M non-dimensional mass flow rate - MC critical molecular weight - M*, Me molecular weights of a statistical segment, and of polymer chain between entanglements - Mn, MW number average and weight average molecular weights - m, k two fitting parameters of slip model - s , s o nominal and characteristic sliding velocities - u non-dimensional sliding velocity - u sc initial (infinitesimal) slip velocity - u 1 upper limit of u on the lower branch - u 2 lower limit of u on the upper branch - u max value of u corresponding to fmin - u min value of u corresponding to fmax - U piston speed - Q nominal volumetric flow rate - q non-dimensional volumetric flow rate - R, Ro capillary and barrel radii - M non-dimensional mass flow rate  相似文献   

14.
The displacement of one fluid by another miscible fluid in porous media is an important phenomenon that occurs in petroleum engineering, in groundwater movement, and in the chemical industry. This paper presents a recently developed stability criterion which applies to the most general miscible displacement. Under special conditions, different expressions for the onset of fingering given in the literature can be obtained from the universally applicable criterion. In particular, it is shown that the commonly used equation to predict the stable velocity ignores the effects of dispersion on viscous fingering.Nomenclature C Solvent concentration - Unperturbed solvent concentration - D L Longitudinal dispersion coefficient [m2/s] - D T Transverse dispersion coefficient [m2/s] - g Gravitational acceleration [m/s2] - I sr Instability number - k Permeability [m2] - K Ratio of transverse to longitudinal dispersion coefficient - L Length of the porous medium [m] - L x Width of the porous medium [m] - L y Height of the porous medium [m] - M Mobility ratio - V Superficial velocity [m/s] - V c Critical velocity [m/s] - V s Velocity at the onset of instability [m/s] - µ Viscosity [Pa/s] - Unperturbed viscosity [Pa/s] - µ 0,µ s Viscosities of oil and solvent, respectively [Pa/s] - Density [kg/m3] - 0, s Densities of oil and solvent, respectively [kg/m3] - Porosity - Dimensionless length  相似文献   

15.
A three-parameter model describing the shear rate-shear stress relation of viscoelastic liquids and in which each parameter has a physical significance, is applied to a tangential annular flow in order to calculate the velocity profile and the shear rate distribution. Experiments were carried out with a 5000 wppm aqueous solution of polyacrylamide and different types of rheometers. In a shear-rate range of seven decades (5 10–3 s–1 < < 1.2 105 s–1) a good agreement is obtained between apparent viscosities calculated with our model and those measured with three different types of rheometers, i.e. Couette rheometers, a cone-and-plate rheogoniometer and a capillary tube rheometer. a physical quantity defined by:a = {1 – ( / 0)}/ 0 (Pa–1) - C constant of integration (1) - r distancer from the center (m) - r 1,r 2 radius of the inner and outer cylinder (m) - v r local tangential velocity at a distancer from the center (v r = r r) (m s–1) - v 2 local tangential velocity at a distancer 2 from the center (m s–1) - shear rate (s–1) - local shear rate (s–1) - 1 wall shear rate at the inner cylinder (s–1) - dynamic viscosity (Pa s) - a apparent viscosity (a = / ) (Pa s) - a1 apparent viscosity at the inner cylinder (Pa s) - 0 zero-shear viscosity (Pa s) - infinite-shear viscosity (Pa s) - shear stress (Pa) - r local shear stress at a distancer from the center (Pa) - 0 yield stress (Pa) - 1, 2 wall shear-stress at the inner and outer cylinder (Pa) - r local angular velocity (s–1) - 2 angular velocity of the outer cylinder (s–1)  相似文献   

16.
Superposition of oscillatory shear imposed from the boundary and through pressure gradient oscillations and simple shear is investigated. The integral fluid with fading memory shows flow enhancement effects due to the nonlinear structure. Closed-form expressions for the change in the mass transport rate are given at the lowest significant order in the perturbation algorithm. The elasticity of the liquid plays as important a role in determining the enhancement as does the shear dependent viscosity. Coupling of shear thinning and elasticity may produce sharp increases in the flow rate. The interaction of oscillatory shear components may generate a steady flow, either longitudinal or orthogonal, resulting in increases in flow rates akin to resonance, and due to frequency cancellation, even in the absence of a mean gradient. An algorithm to determine the constitutive functions of the integral fluid of order three is outlined.Nomenclature A n Rivlin-Ericksen tensor of order . - A k Non-oscillatory component of the first order linear viscoelastic oscillatory velocity field induced by the kth wave in the pressure gradient - d Half the gap between the plates - e x, e z Unit vectors in the longitudinal and orthogonal directions, respectively - G(s) Relaxation modulus - G History of the deformation - Stress response functional - I() Enhancement defined as the ratio of the frequency dependent part of the discharge to the frequencyindependent part of it at the third order - I *() Enhancement defined as the ratio of the increase in discharge due to oscillations to the total discharge without the oscillations - k Power index in the relaxation modulus G(s) - k i –1 Relaxation times in the Maxwell representation of the quadratic shear relaxation modulus (s 1, s 2) - m i –1, n i –1 Relaxation times in the Maxwell representations of the constitutive functions 1(s 1,s 2,s 3) and 4 (s 1, s 2,s 3), respectively - P Constant longitudinal pressure gradient - p Pressure field - mx ,(3) nz ,(3) Mean volume transport rates at the third order in the longitudinal and orthogonal directions, respectively - 0,(3), 1,(3) Frequency independent and dependent volume transport rates, respectively, at the third order - s = t- Difference between present and past times t and   相似文献   

17.
In this paper we examine the generalized Buckley-Leverett equations governing threephase immiscible, incompressible flow in a porous medium, in the absence of gravitational and diffusive/dispersive effects. We consider the effect of the relative permeability models on the characteristic speeds in the flow. Using a simple idea from projective geometry, we show that under reasonable assumptions on the relative permeabilities there must be at least one point in the saturation triangle at which the characteristic speeds are equal. In general, there is a small region in the saturation triangle where the characteristic speeds are complex. This is demonstrated with the numerical results at the end of the paper.Symbols and Notation a, b, c, d entries of Jacobian matrix - A, B, C, D coefficients in Taylor expansion of t, v, a - det J determinant of matrix J - dev J deviator of matrix J - J Jacobian matrix - L linear term in Taylor expansion for J near (s v, sa) = (0, 1) - m slope of r + - p pressure - r± eigenvectors of Jacobian matrix - R real line - S intersection of saturation triangle with circle of radius centered at (1, 0) - S intersection of saturation triangle with circle of radius centered at (0, 1) - s l, sv, sa saturations of phases (liquid, vapor, aqua) - tr J trace of matrix J - v l , v v , v a phase flow rates (Darcy velocities) - v T total flow rate - X, Y, Z entries of dev J - smooth closed curve inside saturation triangle - saturation triangle - l, v, a phase density times gravitational acceleration times resevoir dip angle - K total permeability - l, v, a three-phase relative permeabilities - lv>, la liquid phase relative permeabilities from two-phase data - l, v, a mobilities of phases - T total mobility - l Corey mobility - l, v, a phase viscosities - ± eigenvalues of Jacobian matrix - porosity Supported in part by National Science Foundation grant No. DMS-8701348, by Air Force Office of Scientific Research grant No. AFOSR-87-0283, and by Army Research Office grant No. DAAL03-88-K-0080.This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.  相似文献   

18.
Summary The rheological behaviour of aqueous solutions of Separan AP-30 and Polyox WSR-301 in a concentration range of 10–10000 wppm is investigated by means of a cone-and-plate rheogoniometer. The relation between the shear stress and the shear rate is for lower shear rates characterized by a timet 0, which is concentration dependent. Both polymers show for 4000 s–1 < < 10000 s–1 a behaviour similar to that of a Bingham material, characterized by a dynamic viscosity 0 and an apparent yield stress 0, which also depend on the concentration. The inertial forces are measured for water and some other Newtonian liquids. An explanation is given why the theoretical model developed for these forces does not match the experimental values; the shape of the liquid surface is shear rate dependent. To obtain the first normal stress difference, we have to correct for these inertial forces, the surface tension and the buoyancy. The normal forces, measured for Separan AP-30, appear to be a linear function of the shear rate for 350 s–1 < < 3300 s–1.
Zusammenfassung Das rheologische Verhalten wäßriger Polymerlösungen von Separan AP-30 und Polyox WSR-301 wird in einem Konzentrationsgebiet von 10–10000 wppm in einem Kegel-Platte-Rheogoniometer untersucht. Der Zusammenhang zwischen Schubspannung und Schergeschwindigkeit wird für niedrige Schergeschwindigkeiten durch eine konzentrationsabhängige Zeitt 0 gekennzeichnet. Für Schergeschwindigkeiten 4000 s–1 < < 10000 s–1 zeigen beide Polymere ein genähert binghamsches Verhalten, gekennzeichnet durch eine dynamische Viskosität 0 und eine scheinbare Fließgrenze 0, welche ebenfalls konzentrationsabhängig sind. Die Trägheitskräfte werden für Wasser und einige newtonsche Öle bestimmt. Die Abweichung der experimentellen Ergebnisse vom theoretischen Modell wird durch die Abhängigkeit der Gestalt der Flüssigkeitsoberfläche von der Schergeschwindigkeit erklärt. Um die Werte der ersten Normalspannungsdifferenz zu erhalten, muß man bezüglich der Trägheitskräfte, der Oberflächenspannung und der Auftriebskräfte korrigieren. Die Normalspannungen für Separan AP-30, gemessen für 350 s–1 < < 3300 s–1, zeigen eine lineare Abhängigkeit von der Schergeschwindigkeit.

c concentration (wppm) - g acceleration of gravity (ms–2) - K force (N) - K b buoyant force (N) - K c force, acting on the cone (N) - K 0 dimensional constant def. by eq. [24] (N) - K s force, def. by eq. [22] (N) - M dimensional constant def. by eq. [24] (Ns) - P s pressure def. by eq. [17] (Nm–2) - P 0 average pressure in the liquid atr = 0 (Nm–2) - P R average pressure in the liquid atr = R (Nm–2) - r 1,r 2 radii of curved liquid surface (m) - R platen radius (m) - R w radius of wetted platen area (m) - S x standard deviation ofx - t 0 characteristic time def. by eq. [1] (s) - T temperature (°C) - V volume of the submerged part of the cone (m3) - v tangential velocity of liquid (ms–1) - x distance (m) - angle (rad) - 0 cone angle (rad) - calibration constant (Nm–3) - shear rate (s–1) - dynamic viscosity (mPa · s) - 0 viscosity def. by eq. [1] (mPa · s) - contact angle (rad) - density (kgm–3) - static surface tension (Nm–1) - shear stress (Nm–2) - 0 yield stress def. by eq. [1] (Nm–2) - c, p angular velocity (c = cone,p = plate) (s–1) With 8 figures and 3 tables  相似文献   

19.
The extinction of forced and unforced turbulent premixed counterflow flames has been quantified with lean mixtures of air and each of methane, propane and ethylene. Symmetric flames were produced with two streams of equal equivalence ratios between 0.6 and 1.0, and nozzle separations from 0.2 to 2.5 D, while acoustic drivers were used to force the flow at discrete frequencies. Photographs confirmed visual observation of unforced twin flames and their merging with increasing strain rate into one reaction zone at the stagnation plane before extinction. Propane flames merged at velocities closer to the extinction limit. At separations less than 0.4 D local quenching and extinction and relight occurred at equivalence ratios less than 0.7, independent of fuel type. Unforced extinction times were determined by igniting mixtures with equivalence ratios of 0.6 to 0.9 and bulk velocities above the extinction limit, and observing the extinction process with high-speed video: they were found to increase quasi-exponentially with reduction in strain rate, and were strongly dependent on equivalence ratio and fuel type. Forced extinction times also increased with decrease in strain rate and with reduction in forcing amplitude and instantaneous strain rates greater than the unforced limit were observed. Ethylene flames were more sensitive to the cyclic weakening with more rapid temperature decay rates and shorter extinction times.Abbreviations f Forcing frequency (Hz) - H Nozzle separation (m) - D Nozzle diameter (m) - Bulk strain rate, 2U b/H, (s-1) - Bulk strain rate at extinction (s-1) - Maximum instantaneous forced strain rate (s-1) - Maximum instantaneous unforced strain rate (s-1) - Forcing time to extinction (s) - Time of one period of forcing oscillation (s) - Bulk velocity, flow rate/nozzle exit area (ms-1) - Bulk velocity at extinction (ms-1) - u Fluctuating component of turbulent velocity (ms-1) - Fluctuating component of forced velocity (ms-1) - Equivalence ratio (dimensionless)  相似文献   

20.
We study the simultaneous one-dimensional flow of water and oil in a heterogeneous medium modelled by the Buckley-Leverett equation. It is shown both by analytical solutions and by numerical experiments that this hyperbolic model is unstable in the following sense: Perturbations in physical parameters in a tiny region of the reservoir may lead to a totally different picture of the flow. This means that simulation results obtained by solving the hyperbolic Buckley-Leverett equation may be unreliable.Symbols and Notation f fractional flow function varying withs andx - value off outsideI - value off insideI - local approximation off around¯x - f ,f + values of - f j n value off atS j n andx j - g acceleration due to gravity [ms–2] - I interval containing a low permeable rock - k dimensionless absolute permeability - k * absolute permeability [m2] - k c * characteristic absolute permeability [m2] - k ro relative oil permeability - k rw relative water permeability - L * characteristic length [m] - L 1 the space of absolutely integrable functions - L the space of bounded functions - P c dimensionless capillary pressure function - P c * capillary pressure function [Pa] - P c * characteristic pressure [Pa] - S similarity solution - S j n numerical approximation tos(xj, tn) - S 1, S2,S 3 constant values ofs - s water saturation - value ofs at - s L left state ofs (wrt. ) - s R right state ofs (wrt. ) - s s for a fixed value of in Section 3 - T value oft - t dimensionless time coordinate - t * time coordinate [s] - t c * characteristic time [s] - t n temporal grid point,t n=n t - v * total filtration (Darcy) velocity [ms–1] - W, , v dimensionless numbers defined by Equations (4), (5) and (6) - x dimensionless spatial coordinate [m] - x * spatial coordinate [m] - x j spatial grid piont,x j=j x - discontinuity curve in (x, t) space - right limiting value of¯x - left limiting value of¯x - angle between flow direction and horizontal direction - t temporal grid spacing - x spatial grid spacing - length ofI - parameter measuring the capillary effects - argument ofS - o dimensionless dynamic oil viscosity - w dimensionless dynamic water viscosity - c * characteristic viscosity [kg m–1s–1] - o * dynamic oil viscosity [kg m–1s–1] - w * dynamic water viscosity [k gm–1s–1] - o dimensionless density of oil - w dimensionless density of water - c * characteristic density [kgm–3] - o * density of oil [kgm–3] - w * density of water [kgm–3] - porosity - dimensionless diffusion function varying withs andx - * dimensionless function varying with s andx * [kg–1m3s] - j n value of atS j n andx j This research has been supported by VISTA, a research cooperation between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap a.s. (Statoil).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号