首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Rheological properties of highly concentrated emulsions of the water-in-oil type were studied. Water phase (concentration approximately 91%) consists of a supersaturated aqueous solution of nitrate salts; water comprises less than 20% by mass. The average size of droplets, D, in the emulsions was varied. It was found that the emulsions are non-Newtonian liquids and flow curves measured in a sweep regime of shearing have clear low-shear-rate Newtonian domain. The complete flow curves are fitted by the Cross equation. The elastic modulus is practically constant in a very wide frequency range. Hence the viscoelastic relaxation processes might be expected at times >>100 s and in the short-term side of the curve at approximately 0.01 s. The elastic modulus (measured in oscillating testing and in elastic recovery as well) is proportional to D-2 while the Newtonian viscosity is proportional to D–1.The time effects were observed: it was found that the emulsions behave as rheopectic materials because prolonged shearing results in an increase of viscosity in the low shear rate domain of several orders of magnitude.Presented in part at the First Annual European Rheological Conference, Guimarães, Portugal, 11–13 September 2003  相似文献   

2.
The effect of drop size distribution on the viscosity was experimentally examined for oil-in-water emulsions at volume fractions of = 0.5, 0.63 and 0.8. At = 0.5, the hydrodynamic forces during drop collisions govern the viscosity behavior. The viscosity versus shear rate curve is scaled on the root-mean-cube diameter which is related to the number of drops per unit volume. At = 0.8, the resistance to flow arises from the deformation and rearrangement of thin liquid films between drops. The viscosity at a given shear rate is inversely proportional to the volume-surface mean diameter which is related to the total interfacial area per unit volume. However, since the drops come into contact and the liquid film separating adjacent drops is generated without drop deformation at = 0.63, the viscosity curve is not scaled on the mean diameter. The flow behavior near the critical volume fraction strongly depends not only on the mean drop size, but also on the width of the distribution.  相似文献   

3.
The shear viscosity of clay-based coating colors containing latex and carboxymethyl cellulose (CMC) has been measured over a relatively large shearrate region. In the shear-rate range of 50–1500 s–1 the measurements were performed using a rotational viscometer and, at higher shear rates extending into the region 105 – 106 s–1, a high pressure capillary viscometer was employed. The viscosity of the clay colors increased with increasing CMC-concentration, but the influence of the CMC-content was less pronounced at higher shear rates. The apparent shear-thinning behavior of the investigated colors could, in part, be attributed to the shear-thinning of the corresponding polymer (CMC) solution constituting the liquid phase of the color, but the influence of another factor was also indicated. At low shear rates, the interaction between the color components can produce relatively high viscosity levels, but in the high shear rate region these interactions appear to be less important for the viscosity level. It is also of interest to note that the viscosity dependence on the solids content in the high shear-rate region could be described with reasonable accuracy using an empirical equation neglecting interactions between the color components.  相似文献   

4.
W. Heß 《Rheologica Acta》1984,23(5):477-488
A molecular theory for the rheological properties of moderately concentrated polymer solutions is developed on the basis of a model of interacting dumbbells. The interaction is treated in a mean field approximation, leading to an effective one-particle potential and a Gaussian stationary distribution function. Various rheological functions such as birefringence, shear viscosity and first normal-stress coefficient for simple shear flow and the Trouton viscosity for simple extensional flow are calculated. Good qualitative agreement with experimental observations is found, especially at intermediate flow rates. It is predicted, for example, that the birefringence increases approximately linearly with shear rate at intermediate shear rates and that the concentration dependence of the gradient varies asc 1/2. The typical non-Newtonian behaviour is obtained for the shear viscosity. For small concentrations the onset of shear rate dependence decreases asc –1/2. At intermediate shear rates an apparent power law is obtained with an exponent between – 0.5 and – 1.0, decreasing with concentration.  相似文献   

5.
Linear rheology of viscoelastic emulsions with interfacial tension   总被引:6,自引:17,他引:6  
Emulsions of incompressible viscoelastic materials are considered, in which the addition of an interfacial agent causes the interfacial tension to depend on shear deformation and variation of area. The average complex shear modulus of the medium accounts for the mechanical interactions between inclusions by a self consistent treatment similar to the Lorentz sphere method in electricity. The resulting expression of the average modulus includes as special cases the Kerner formula for incompressible elastic materials and the Oldroyd expression of the complex viscosity of emulsions of Newtonian liquids in time-dependent flow.  相似文献   

6.
The relation between the liquid crystalline textures and the steady shear viscosity has been investigated in cholesteric emulsions, composed of water, surfactants, and cholesteric liquid crystals. Both at the substrate surface and at the surfactant-coated droplet surface, a homeotropic anchoring is enforced to the adjacent liquid crystal. Under a steady shear flow with the shear rate below 100 s–1, we observed that point defects spontaneously appear, and tend to adopt a regular hexagonal arrangement in the low shear-rate range of 1–20 s–1. In viscosity measurements, the shear-thinning behavior was found, showing a clear correspondence to the texture change. We estimated the height of point defects in the hexagonal array from the viscosity increase in the shear-thinning, assuming that the shear-thinning behavior is caused by the reduction of the effective gap between cone and plate, owing to the presence of the hexagonal array anchored on the plate. The relation between the estimated height and the measured lateral size of point defects agreed with that of the quadrilateral array, which is formed after termination of the shear. This agreement informs that the shape of a point defect is preserved in both defect arrays, independently of shearing conditions.  相似文献   

7.
The volume flow of poly (vinyl chloride) ( = 45,000,T g = 350 K) has been measured in an Instron Capillary Rheometer.The elastic modulus in longitudinal compression, the longitudinal volume viscosity and initial longitudinal volume viscosity, and retardation times were determined at temperatures both below (324 – 343 K) and above (403 – 453 K) the glass transition temperatureT g , and at compression rates between approximately 10–5 and 200 · 10–5 s–1.An increase in the longitudinal volume viscosity was observed for decreases in the volume deformation, increases in the compression rate and increases in temperature.T g decreased at 0.16 K/MPa. The volume flow activation energy was found to be equal to that for shear flow with a constant value of 91.37 kJ/mol.  相似文献   

8.
Drop-on-demand drop formation of colloidal suspensions   总被引:1,自引:0,他引:1  
The drop formation dynamics in the drop-on-demand (DOD) inkjet process is studied for model inks including a Newtonian liquid and colloidal dispersions. The ink shear viscosity is a parameter often adjusted in tuning the DOD drop formation process. Apparent shear viscosity measured at low shear rates is currently used to characterize inkjet inks throughout both the inkjet industry and academia. However, during the ejection process in inkjet printing, very high shear rates (above 1 × 105 s−1) are involved. In this paper, the drop formation characteristics at 10 kHz drop formation rate in a DOD mode of a simple Newtonian liquid are compared with those of a colloidal suspension system which has the same low-shear-rate viscosity as the simple Newtonian liquid, but significantly different high-shear-rate viscosity. Under conditions of good jetting, the drop formation dynamics of the colloidal suspension is similar to that of the simple Newtonian liquid of similar low-shear viscosity, with only slight systematic differences observed. Good jetting is, however, difficult to obtain in the colloidal particle inks, with non-straight trajectories and non-axisymmetric ligaments commonly observed. These observations suggest that evaporation, nonuniform wetting, and particle-related changes in properties play a role when poor jetting behavior is observed for colloidal inks.  相似文献   

9.
Steady shear rheology of a dilute emulsion with viscoelastic inclusions is numerically investigated using direct numerical simulations. Batchelor's formulation for rheology of a viscous emulsion is extended for a viscoelastic system. Viscoelasticity is modeled using the Oldroyd-B constitutive equation. A front-tracking finite difference code is used to numerically determine the drop shape, and solve for the velocity and stress fields. The effective stress of the viscoelastic emulsion has three different components due to interfacial tension, viscosity difference (not considered here) and the drop phase viscoelasticity. The interfacial contributions – first and second normal stress differences and shear stresses – vary with Capillary number in a manner similar to those of a Newtonian system. However the shear viscosity decreases with viscoelasticity at low Capillary numbers, and increases at high Capillary numbers. The first normal stress difference due to interfacial contribution decreases with increasing drop phase viscoelasticity. The first normal stress difference due to the drop phase viscoelasticity is found to have a complex dependence on Capillary and Deborah numbers, in contrast with the linear mixing rule. Drop phase viscoelasticity does not contribute significantly to effective shear viscosity of the emulsion. The total first normal stress difference shows an increase with drop phase viscoelasticity at high Capillary numbers. However at low Capillary numbers, a non-monotonic behavior is observed. The results are explained by examining the stress field and the drop shape.  相似文献   

10.
The complex viscosity of microemulsions shows relaxation processes of which the largest relaxation time is about 10–5 s or less. This time can be attributed to relaxation of stresses in the surface of emulsion droplets pertaining to interfacial tension. Superimposed on a spherical droplet surface shape fluctuations can occur due to thermal energies. Our aim is to show the influence of thermal shape fluctuations on the complex viscosity of emulsions. The method used in the derivation has also been applied to inflexible rods to demonstrate its feasibility by showing the formal rheological equivalence of in length thermally fluctuating rods and Rouse's simple model of polymers. The emulsion results have been applied to a dilution series of a non-ionic microemulsion.  相似文献   

11.
The rheological and structural properties of perfluoropolyether (PFPE) lubricant films including viscosity, shear stress, and birefringence were measured at relatively low to extremely high shear rates using a rotational optical rheometer. The viscosity of various films with different thicknesses exhibit Newtonian behavior up to a shear rate 1 × 104 s−1, with a transition to shear-thinning behavior obvious at higher shear rates. Birefringence of these films was also measured for the first time, and these results indicate chain alignment with shear in the shear-thinning regime. The shear rate at which alignment occurs is similar to that of the onset of shear thinning. This correlation between chain alignment and shear thinning provides direct evidence that the ability of PFPEs to lubricate hard drives at high shear rates is a direct consequence of the ability of the applied shear field to align the molecules on a molecular level.  相似文献   

12.
We report on the steady-state shear viscosity of suspensions of fibres dispersed in Newtonian fluids, in a wide range of volume fractions throughout the dilute and semi-dilute regimes. We show that the apparent shear-thinning behaviour, which is sometimes observed in the semi-dilute regime at intermediate shear rates, is an experimental artefact due to the presence of transient clusters of entangled fibres in the suspensions. At high shear rates, the fibres are aligned and the suspensions exhibit Newtonian behaviour. In this regime, the viscosity is a function of volume fraction and fibre aspect ratio only. The data can be rescaled onto a universal curve using a variable that accounts for the average contribution of the particles to the bulk stress. All these results are discussed in relation to recent theories. Received: 19 January 1999 Accepted: 17 June 1999  相似文献   

13.
We investigated the deformation of a strong shear thinning droplet undergoing simple shear flow in a Newtonian liquid. The droplet was an aqueous solution of poly(ethylene oxide) end capped with an alkyl group that forms spherical micelles in aqueous solution. At high concentrations and below a critical temperature, the jammed micelles showed strong shear thinning behaviour, and neither a yield stress nor a Newtonian viscosity was observed. At small shear rates, the droplet rotated and aligned in the flow, but did not deform or only very weakly. At high shear rates, the droplet deformation increased with increasing shear rate. The deformed droplet did not relax after the shear was stopped except for a modest rounding of the edges. For each shear rate, an apparent viscosity, η ad, of the equivalent Newtonian droplet was calculated assuming affine deformation. η ad showed a power law dependence on the capillary number Ca with an exponent of − 1.8 and was larger than the shear viscosity of the micelle suspension at the same shear rates. The results were explained by the existence of a strong gradient of the viscosity inside the droplet leading to a very low viscosity fluid layer near the droplet/matrix interface.  相似文献   

14.
The shear dependence of the bulk viscosities of two structurally different types of perfluoropolyether fluids was determined by two different techniques. The first involved direct measurement in a high shear Couette viscometer, the second utilized the time-temperature superposition principle to establish master curves from viscosity determinations at low shear rates and temperature; the results are comparable. Both fluids begin to show non-Newtonian behavior at shear rates above 10,000 s–1.  相似文献   

15.
We present analyses to provide a generalized rheological equation for suspensions and emulsions of non-Brownian particles. These multiparticle systems are subjected to a steady straining flow at low Reynolds number. We first consider the effect of a single deformable fluid particle on the ambient velocity and stress fields to constrain the rheological behavior of dilute mixtures. In the homogenization process, we introduce a first volume correction by considering a finite domain for the incompressible matrix. We then extend the solution for the rheology of concentrated system using an incremental differential method operating in a fixed and finite volume, where we account for the effective volume of particles through a crowding factor. This approach provides a self-consistent method to approximate hydrodynamic interactions between bubbles, droplets, or solid particles in concentrated systems. The resultant non-linear model predicts the relative viscosity over particle volume fractions ranging from dilute to the the random close packing in the limit of small deformation (capillary or Weissenberg numbers) for any viscosity ratio between the dispersed and continuous phases. The predictions from our model are tested against published datasets and other constitutive equations over different ranges of viscosity ratio, volume fraction, and shear rate. These comparisons show that our model, is in excellent agreement with published datasets. Moreover, comparisons with experimental data show that the model performs very well when extrapolated to high capillary numbers (C a?1). We also predict the existence of two dimensionless numbers; a critical viscosity ratio and critical capillary numbers that characterize transitions in the macroscopic rheological behavior of emulsions. Finally, we present a regime diagram in terms of the viscosity ratio and capillary number that constrains conditions where emulsions behave like Newtonian or Non-Newtonian fluids.  相似文献   

16.
Summary An attempt is made at giving an appraisal of some representative rheological models of both differential and integral type, using the standard rheological measurements of six polymer melts. Experimental data obtained were the steady shear viscosity and the first normal stress difference by means of aWeissenberg rheogoniometer over the range of shear rates: 10–2 ~ 10 sec–1, and by means of aHan slit/capillary rheometer over the range of shear rates: 10 ~ 103 sec–1. Also measured by means of theWeissenberg rheogoniometer were the dynamic viscosity and dynamic elastic modulus over the range of frequencies: 0.3 × 10–2 ~ 3 × 102 sec–1. Rheological models chosen for an appraisal are theSpriggs 4-constant model, theMeister model, and theBogue model.It is found that the capability of the three models considered is about the same in their prediction of the rheological behavior of polymer melts in simple shearing flow. It is pointed out however that, due to the ensuing mathematical complexities, the usefulness of these models is limited to the study of flow problems associated with simple flow situations. Therefore, in analysing the complex flow situations often encountered with various polymer processings, the authors suggest use of the empirical models of the power-law type for both the viscosity and normal stress functions.With 11 figures, 4 schemas and 1 table  相似文献   

17.
Viscosity, modulus, and yield stress for 0–6 wt% aqueous solutions of Carbopol 941 were investigated using constant shear rate, constant shear stress, and dynamic oscillatory experiments. The microgel character of the polymer was evident from the solid-like behavior of the solutions above 1 wt%. Yield stress increased with concentration, but yield occurred at a critical shear strain of 40%, independent of concentration. The static stress-strain relationship became non-linear at ~ 25% strain, in fair agreement with the onset of non-linear response in the storage modulus at ~ 10% strain. Small strain moduli from static and low frequency measurements agreed rather well; modulus values obtained from the recoverable strain after yielding were 30–40% smaller. Solutions flowed at near-constant stress in the low shear rate regime; at higher rates the stress increases with shear rate more rapidly. The viscosity did not obey the Cox-Merz rule. Steady-state viscosity scaled with polymer concentration to the 3/4 power. Results were interpreted using a cellular, deformable sphere model for the polymer, in analogy to emulsions and foams.  相似文献   

18.
A 3D lattice Boltzmann model for two-phase flow with amphiphilic surfactant was used to investigate the evolution of emulsion morphology and shear stress in starting shear flow. The interfacial contributions were analyzed for low and high volume fractions and varying surfactant activity. A transient viscoelastic contribution to the emulsion rheology under constant strain rate conditions was attributed to the interfacial stress. For droplet volume fractions below 0.3 and an average capillary number of about 0.25, highly elliptical droplets formed. Consistent with affine deformation models, gradual elongation of the droplets increased the shear stress at early times and reduced it at later times. Lower interfacial tension with increased surfactant activity counterbalanced the effect of increased interfacial area, and the net shear stress did not change significantly. For higher volume fractions, co-continuous phases with a complex topology were formed. The surfactant decreased the interfacial shear stress due mainly to advection of surfactant to higher curvature areas. Our results are in qualitative agreement with experimental data for polymer blends in terms of transient interfacial stresses and limited enhancement of the emulsion viscosity at larger volume fractions where the phases are co-continuous.  相似文献   

19.
Summary Samples of stable coal-oil mixtures were prepared with coal concentrations ranging from 30–50% by weight. Extensive rheological data were obtained using capillary and cone-plate viscometers for samples of coal-oil mixtures and fuel-oil which served as a reference fluid. Viscosity measurements show coal-oil mixtures to be shear-thinning suspensions, i.e., the viscosity decreases moderately with increasing shear rates. In the concentration range of 30–40% coal, the coal-oil mixture shows a predominantly Newtonian behavior. For mixtures with coal concentrations higher than 40%, a yield point was observed. The study of these samples with the rotating-rod viscometer indicated a migration of coal particles away from the rotating rod with no noticeable rod climbing, thus no evidence of normal stress effects. The rheological data can be represented by any of the three two-parameter models: Power Law, Bingham Plastic, or Casson, with the last two models being more realistic and consistent with the observations.With 9 figures  相似文献   

20.
Rheological measurements have been carried out using a rotational viscometer with a system of coaxial cylinders on four liquid crystalline substances from the group of cyanobiphenyls. On the basis of results of these investigations it was found that in the investigated range of shear rates the nematic phases exhibited Newtonian flow behaviour, while the smectic phases exhibited non-Newtonian behaviour. For shear rates up to ca. 1000 s–1 the dependence of the shear stress on shear rate is well described by a power-law model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号