首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文章采用标准k-ω SST湍流模型和动网格技术, 实现了绕俯仰振荡NACA66水翼非定常流动结构与水动力特性的数值模拟, 并基于有限域涡量矩理论定量表征了局部旋涡结构对水翼动力特性的影响. 研究结果表明: 在水翼升程阶段, 当攻角较小时, 层流向湍流的转捩点由水翼尾缘向前缘移动; 在较大攻角时, 顺时针尾缘涡?TEV在水翼吸力面上生成并向前缘发展, 同时与吸力面上的顺时针前缘涡?LEV融合发展为附着在整个吸力面上的新前缘涡?LEV, 新的?LEV与逆时针尾缘涡+TEV相互作用直至完全脱落, 直接导致了水翼的动力失速, 在回程阶段, 绕振荡水翼的流场结构逐渐由湍流转变为层流. 基于有限域涡量矩理论的定量分析发现, 有限域内附着的?LEV和?TEV提供正升力, 当?LEV发展覆盖整个吸力面时对升力的贡献最大, 占总升力近50%, 而+TEV提供负升力. 同时发现, 有限域内各旋涡内部的不同区域提供的升力有正有负; 而逸出有限域的旋涡内部不同区域提供的升力方向均保持一致, 其中顺时针涡提供正升力, 而逆时针涡提供负升力. 在失速阶段, 域外旋涡整体对升力贡献较小且存在小幅波动, 体现了流动的非定常性.   相似文献   

2.
In this paper the combined effect of two mechanisms for lift enhancement at low Reynolds numbers are considered, wing oscillations and wing flexibility. The force, deformation and flow fields of rigid and flexible low aspect ratio (AR=3) and high aspect ratio (AR=6) wings oscillating at a fixed post-stall angle of attack of 15° and amplitude of 15% of chord are measured. The force measurements show that flexibility can increase the time-averaged lift coefficient significantly. For low aspect ratio wings the maximum lift coefficient across all Strouhal numbers was Cl=1.38 for the rigid wing as opposed to Cl=2.77 for the flexible wing. Very similar trends were observed for the high aspect ratio wings. This increase is associated with significant deformation of the wing. The root is sinusoidally plunged with small amplitude but this motion is amplified along the span resulting in a larger tip motion but with a phase lag. The amount it is amplified strongly depends on Strouhal number. A Strouhal number of Src=1.5 was selected for detailed flow field measurements due to it being central to the high-lift region of the flexible wings, producing approximately double the lift of the rigid wing. For this Strouhal number the rigid wings exhibit a Leading Edge Vortex (LEV) ring. This is where the clockwise upper-surface LEV pairs with the counter-clockwise lower-surface LEV to form a vortex ring that self-advects upstream and away from the wing's upper surface. Conversely the deformation of the flexible wings inhibits the formation of the LEV ring. Instead a strong upper-surface LEV forms during the downward motion and convects close to the airfoil upper surface thus explaining the significantly higher lift. These measurements demonstrate the significant gains that can be achieved through the combination of unsteady aerodynamics with flexible structures.  相似文献   

3.
Measurements of the unsteady flow structure and force time history of pitching and plunging SD7003 and flat plate airfoils at low Reynolds numbers are presented. The airfoils were pitched and plunged in the effective angle of attack range of 2.4°–13.6° (shallow-stall kinematics) and ?6° to 22° (deep-stall kinematics). The shallow-stall kinematics results for the SD7003 airfoil show attached flow and laminar-to-turbulent transition at low effective angle of attack during the down stroke motion, while the flat plate model exhibits leading edge separation. Strong Re-number effects were found for the SD7003 airfoil which produced approximately 25 % increase in the peak lift coefficient at Re = 10,000 compared to higher Re flows. The flat plate airfoil showed reduced Re effects due to leading edge separation at the sharper leading edge, and the measured peak lift coefficient was higher than that predicted by unsteady potential flow theory. The deep-stall kinematics resulted in leading edge separation that led to formation of a large leading edge vortex (LEV) and a small trailing edge vortex (TEV) for both airfoils. The measured peak lift coefficient was significantly higher (~50 %) than that for the shallow-stall kinematics. The effect of airfoil shape on lift force was greater than the Re effect. Turbulence statistics were measured as a function of phase using ensemble averages. The results show anisotropic turbulence for the LEV and isotropic turbulence for the TEV. Comparison of unsteady potential flow theory with the experimental data showed better agreement by using the quasi-steady approximation, or setting C(k) = 1 in Theodorsen theory, for leading edge–separated flows.  相似文献   

4.
Direct numerical simulation is used to study the loading of a rigid, circular cylinder impacted by a 2D vortex. The vortex travels within a stream of fluid characterized by Reynolds number of 150. Vortex impact occurs at twenty-five different times within one vortex shedding cycle. Substantial variation is observed in the maximum values of the drag and lift force coefficients. This variation is due to interaction between the impinging vortex and those attached to the cylinder. As the radius of the impinging vortex is increased from one to three times the cylinder’s diameter, the variation in maximum force coefficients with time of impact decreases. The variation decreases because the larger vortex alters the flow field and vortex shedding cycle prior to impacting the cylinder. For structures impacted by a vortex similar in size, significant under-prediction of the maximum loading may occur if variation in loading with vortex impact time is not considered.  相似文献   

5.
The aerodynamic forces and flow structure of a model insect wing is studied by solving the Navier-Stokes equations numerically. After an initial start from rest, the wing is made to execute an azimuthal rotation (sweeping) at a large angle of attack and constant angular velocity. The Reynolds number (Re) considered in the present note is 480 (Re is based on the mean chord length of the wing and the speed at 60% wing length from the wing root). During the constant-speed sweeping motion, the stall is absent and large and approximately constant lift and drag coefficients can be maintained. The mechanism for the absence of the stall or the maintenance of large aerodynamic force coefficients is as follows. Soon after the initial start, a vortex ring, which consists of the leading-edge vortex (LEV), the starting vortex, and the two wing-tip vortices, is formed in the wake of the wing. During the subsequent motion of the wing, a base-to-tip spanwise flow converts the vorticity in the LEV to the wing tip and the LEV keeps an approximately constant strength. This prevents the LEV from shedding. As a result, the size of the vortex ring increases approximately linearly with time, resulting in an approximately constant time rate of the first moment of vorticity, or approximately constant lift and drag coefficients. The variation of the relative velocity along the wing span causes a pressure gradient along the wingspan. The base-to-tip spanwise flow is mainly maintained by the pressure-gradient force. The project supported by the National Natural Science Foundation of China (10232010)  相似文献   

6.
Numerical simulations have been used to analyze the effect that vortices, shed from one flapping foil, have on the thrust of another flapping foil placed directly downstream. The simulations attempt to model the dorsal–tail fin interaction observed in a swimming bluegill sunfish. The simulations have been carried out using a Cartesian grid method that allows us to simulate flows with complex moving boundaries on stationary Cartesian grids. The simulations indicate that vortex shedding from the upstream (dorsal) fin is indeed capable of increasing the thrust of the downstream (tail) fin significantly. Vortex structures shed by the upstream dorsal fin increase the effective angle-of-attack of the flow seen by the tail fin and initiate the formation of a strong leading edge stall vortex on the downstream fin. This stall vortex convects down the surface of the tail and the low pressure associated with this vortex increases the thrust on the downstream tail fin. However, this thrust augmentation is found to be quite sensitive to the phase relationship between the two flapping fins. The numerical simulations allows us to examine in detail, the underlying physical mechanism for this thrust augmentation.   相似文献   

7.
Passive control of the wake behind a circular cylinder in uniform flow is studied by numerical simulation at ReD=80. Two small control cylinders are placed symmetrically along the separating shear layers at various stream locations. In the present study, the detailed flow mechanisms that lead to a significant reduction in the fluctuating lift but maintain the shedding vortex street are clearly revealed. When the stream locations lie within 0.8≤XC/D≤3.0, the alternate shedding vortex street remains behind the control cylinders. In this case, the symmetric standing eddies immediately behind the main cylinder and the downstream delay of the shedding vortex street are the two primary mechanisms that lead to a 70–80% reduction of the fluctuating lift on the main cylinder. Furthermore, the total drag of all the cylinders still has a maximum 5% reduction. This benefit is primarily attributed to the significant reduction of the pressure drag on the main cylinder. Within XC/D>3.0, the symmetry of the standing eddy breaks down and the staggered vortex street is similar to that behind a single cylinder at the same Reynolds number. In the latter case, the mean pressure drag and the fluctuating lift coefficients on the main cylinder will recover to the values of a single cylinder.  相似文献   

8.
The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing quantitatively the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number considered, based on the cylinder diameter and steady free stream speed, is Re=200, while the non-dimensional rotation rate (ratio of the surface speed and free stream speed) selected was α=1 and 3. For α=1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α=3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. We characterize quantitatively the contributions of individual fluid elements (vortices) to aerodynamic forces, explaining and quantifying the mechanisms by which the lift is generated in each case. In particular, for high rotation (when α=3), we explain the relation between the mechanisms of vortex shedding suppression and those by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached.  相似文献   

9.
This paper presents results obtained from a numerical simulation of a two-dimensional (2-D) incompressible linear shear flow over a square cylinder. Numerical simulations are performed, using the lattice Boltzmann method, in the ranges of 50⩽Re⩽200 and 0⩽K⩽0.5, where Re and K are the Reynolds number and the shear rate, respectively. The effect of the shear rate on the frequency of vortex shedding from the cylinder, and the lift and drag forces exerted on the cylinder are quantified together with the flow patterns around the cylinder. The present results show that vortex structure behind the cylinder is strongly dependant on both the shear rate and Reynolds number. When Re=50, a small K can disturb the steady state and cause an alternative vortex shedding with uneven intensity. In contrast, a large value of K will suppress the vortex shedding from the cylinder. When Re>50, the differences in the strength and size of vortices shed from the upper and lower sides of the cylinder become more pronounced as K increases. Vortex shedding disappears when K is larger than a critical value, which depends on Re. The flow patterns around the cylinder for different Re tend towards self-similarity with increasing K. The lift and drag forces exerted on the cylinder, in general, decrease with increasing K. Unlike a shear flow past a circular cylinder, the vortex shedding frequency past a square cylinder decreases with increasing the shear rate. A significant reduction of the drag force occurs in the range 0.15<K<0.3.  相似文献   

10.
Vortex shedding and aerodynamic forces on a circular cylinder in a linear shear flow with its axis normal to the plane of the velocity shear profile at subcritical Reynolds number are investigated experimentally. The shear parameter β, which is based on the velocity gradient, cylinder diameter and upstream mean velocity at the center plane of the cylinder, varies from 0 to 0.27. The Strouhal number has no significant variation with the shear parameter. The time-mean base pressure increases and the fluctuating component of the base pressure decreases significantly with increasing shear parameter. Vortex shedding is suppressed by the velocity shear. Dislocation of the stagnation point takes place and this influences the pressure distribution around the cylinder together with the velocity shear. A mean lift force arises in the shear flow due to asymmetry of the pressure distribution, and it acts from the high velocity side to the low velocity side. In addition, the lift coefficient increases and the drag coefficient decreases with increasing shear parameter.  相似文献   

11.
Small elements of circular, square, triangular and thin-strip cross-sections are used to suppress vortex shedding from a rectangular cylinder of stream-wise to transverse scale ratio L/B=3.0 at Reynolds numbers in the range of Re=VB/ν=75–130, where V is the on-coming velocity of the stream, and ν is the kinematic viscosity. The relative transverse dimension of the small element b/B is fixed at 0.2. The results of numerical simulation and visualization experiment show that, vortex shedding from both sides of the cylinder can be suppressed and the fluctuating drag and lift of the cylinder can be greatly reduced, if the element is placed in a certain region referred to as the effective zone. Comparisons at a specific Reynolds number indicate that the square element produces the largest size of the effective zone, whereas the triangular element yields the smallest. Results also show that the effective zone for the square element shrinks with increasing Re and disappears at Re>130. Independent of element cross-section shape and Reynolds number, the center of the effective zone is always at X/B=2.5–3.0 and Y/B≈1.0. The mechanism of the suppression is discussed from the view points of velocity profile stability and stress distribution.  相似文献   

12.
Two-degree-of-freedom vortex-induced vibrations (VIV) of a circular cylinder close to a plane boundary are investigated numerically. The Reynolds-Averaged Navier-Stokes (RANS) equations are solved using the Arbitrary Lagrangian Eulerian (ALE) scheme with a k-ω turbulence model closure. The numerical model is validated against experimental data of VIV of a cylinder in uniform flow and VIV of a cylinder close to a plane boundary at low mass ratios. The numerical results of the vibration mode, vibration amplitude and frequency agree well with the experimental data. VIV of a circular cylinder close to a plane boundary is simulated with a mass ratio of 2.6 and gap ratios of e/D=0.002 and 0.3 (gap ratio is defined as the ratio of gap between the cylinder and the bed (e) to cylinder diameter (D)). Simulations are carried out for reduced velocities ranging from 1 to 15 and Reynolds numbers ranging from 1000 to 15 000. It is found that vortex-induced vibrations occur even if the initial gap ratio is as small as e/D=0.002, although reported research indicated that vortex shedding behind a fixed circular cylinder is suppressed at small gap ratios (e/D<0.3 or 0.2). It was also found that vibration amplitudes are dependant on the bouncing back coefficient when the cylinder hits the plane boundary. Three vortex shedding modes are identified according to the numerical results: (i) single-vortex mode where the vortices are only shed from the top of the cylinder; (ii) vortex-shedding-after-bounce-back mode; (iii) vortex-shedding-before-bounce-back mode. It was found that the vortex shedding mode depends on the reduced velocity.  相似文献   

13.
Two dimensional flow over a circular cylinder with an upstream control rod of same diameter is simulated in unbound condition and in wall bounded conditions. The cylinders are placed at various heights from the wall and the inter-distance between cylinders is also varied. The control rod is subjected to different rotation rates. It is found that, in unbound condition, rotating the control rod decreases the critical pitch length (S/Dcr) and increases the drag and Strouhal number of the main cylinder. In presence of plane wall, the shielding provided by the separated shear layers from the control rod in cavity regime is deteriorated due to deflection of shear layers which results in higher drag and large fluctuation of lift coefficient. However, in wake impingement regime, the binary vortices from the control rod are weakened due to diffusion of vorticity and hence, the main cylinder experiences a lower drag and small lift fluctuations than that of unbound condition. The critical height of vortex suppression (H/Dcr) is higher in cavity regime than that of wake impingement regime due to the single extended-bluff body like configuration. The rotation of control rod energizes the wall boundary layer and increases the critical height of vortex suppression. Increasing the rotational rate of control rod decreases the drag force and reduces the amplitude of lift fluctuation. Analysis of the wall shear stress distribution reveals that it suffers a sudden drop at moderate height where the normal Karman vortex shedding changes to irregular shedding consisting of single row of negative vortices. Modal structures obtained from dynamic mode decomposition (DMD) reveal that the flow structures behind the main cylinder are suppressed due to wall and the flow is dominated by the wake of control rod.  相似文献   

14.
A theory of unsteady separation in inviscid supersonic flow around a convex corner is developed. Within the framework of the hypothesis suggested the mechanism of separationless-to-separated flow transition is explained and the forces leading to flow separation are determined as functions of the angle θ and the oncoming flow velocity. The values of the angle θ k at which the flow is separated from the corner vertex and the stall angle θ s determining the separated flow direction obtained previously in experiments and by numerical simulation are confirmed.  相似文献   

15.
This study developed a two-dimensional generalized vortex method to analyze the shedding of vortices and the hydrodynamic forces resulting from a solitary wave passing over a submerged circular cylinder placed near a flat seabed. Numerical results for validation are compared with other numerical and experimental results, and satisfactory agreement is found. A series of simulations were performed to study the effects of gap-to-diameter ratio and incident wave height on vorticity pattern as well as the forces exerted on the cylinder. The range of the heights of incident waves is from 0.3h to 0.7h, where h is the still water depth. The range of the gap-to-diameter ratios is from 0.1 to 0.8. The results indicate that the flow pattern and the pressure distribution change significantly because of the close proximity of the seabed where the vorticity flux on the seabed-side surface of the cylinder is suppressed. Placing the cylinder nearer the seabed increases the drag and the positive lift on the cylinder. When the gap-to-diameter ratio increases, the pattern of vortices changes because of the interaction between the main recirculation zone and the shear layers separated from the gap. The maxima of drag, lift and total force increase linearly with the height of the incident wave.  相似文献   

16.
The structure of confined wakes behind a square cylinder in a channel is investigated via the numerical solution of the unsteady Navier–Stokes equations. Vortex shedding behind the cylinder induces periodicity in the flow field. Details of the phenomenon are simulated through numerical flow visualization. The unsteady periodic wake can be characterized by the Strouhal number, which varies with the Reynolds number and the blockage ratio of the channel. The periodicity of the flow is, however, damped in the downstream region of a long duct. This damping may be attributed to the influence of side walls on the flow structure.  相似文献   

17.
In this research, the effect of flow regime change from subsonic to transonic on the air loads of a pitching NACA0012 airfoil is investigated. To do this, the effect of change in flow regime on the lift and pitching moment coefficients hysteresis cycles is studied. The harmonic balance approach is utilized for numerical calculation due to its low computational time. Verifications are also made with previous works and good agreements are observed. The assessment of flow regime change on the aforementioned hysteresis cycles is accomplished in the Mach number range of M=0.65–0.755. The reduced frequency and pitch amplitude also vary from k=0.03 to 0.1 and α0=1–2.51°, respectively. Results show that the effect of increase in Mach number is to increase and decrease the lift coefficient during downstroke and upstroke, respectively, whereas at low reduced frequencies, the effect of increase in Mach number may lead to a reverse manner when airfoil moves toward its extremum angle of attack. Results also reveal that as the pitch amplitude varies, the shape of lift coefficient hysteresis cycle depends more on the pitch amplitude than on the appearance of shock. It is shown that as the Mach number increases, the incidence angles correspond to the extremum pitching moment, and depending on the reduced frequency, lie between zero and extremum angle of attack. These incidence angles shift toward the extremum angle of attack as the reduced frequency decreases. Results also show that the increase in pitch amplitude at low Mach number, in such a way that leads to the formation of shock around the extremum angle of attack, causes the extremum pitching moment to appear around these angles and at high Mach number, depending on the reduced frequency, the extremum pitching moment incidence angles would be between zero and extremum incidence angle.  相似文献   

18.
Leading-edge modifications based on designs inspired by the protrusions on the pectoral flippers of the humpback whale (tubercles) have been the subject of research for the past decade primarily due to their flow control potential in ameliorating stall characteristics. Previous studies have demonstrated that, in the transitional flow regime, full-span wings with tubercled leading edges outperform unmodified wings at high attack angles. The flow mechanism associated with such enhanced loading traits is, however, still being investigated. Also, the performance of full-span tubercled wings in the turbulent regime is largely unexplored. The present study aims to investigate Reynolds number effects on the flow mechanism induced by a full-span tubercled wing with the NACA-0021 cross-sectional profile in the transitional and near-turbulent regimes using computational fluid dynamics. The analysis of the flow field suggests that, with the exception of a few different flow features, the same underlying flow mechanism, involving the presence of transverse and streamwise vorticity, is at play in both cases. With regard to lift-generation characteristics, the numerical simulation results indicate that in contrast to the transitional flow regime, where the unmodified NACA-0021 undergoes a sudden loss of lift, in the turbulent regime, the baseline foil experiences gradual stall and produces more lift than the tubercled foil. This observation highlights the importance of considerations regarding the Reynolds number effects and the stall characteristics of the baseline foil, in the industrial applications of tubercled lifting bodies.  相似文献   

19.
The closely coupled approach combined with the finite volume method (FVM) solver and the finite element method (FEM) solver is used to investigate the fluid-structure interaction (FSI) of a three-dimensional cantilevered hydrofoil in the water tunnel. The FVM solver and the coupled approach are verified and validated by comparing the numerical predictions with the experimental measurements, and good agreement is obtained concerning both the lift on the foil and the tip displacement. In the noncavitating flow, the result indicates that the growth of the initial incidence angle and the Reynolds number improves the deformation of the foil, and the lift on the foil is increased by the twist deformation. The normalized twist angle and displacement along the span of the hydrofoil for different incidence angles and Reynolds numbers are almost uniform. For the cavitation flow, it is shown that the small amplitude vibration of the foil has limited influence on the developing process of the partial cavity, and the quasi two-dimensional cavity shedding does not change the deformation mode of the hydrofoil. However, the frequency spectrum of the lift on the foil contains the frequency which is associated with the first bend frequency of the hydrofoil.  相似文献   

20.
This paper provides a study of the NACA0012 dynamic stall at Reynolds numbers 105 and 106 by means of two- and three-dimensional numerical simulations. The turbulence effect on the dynamic stall is studied by statistical modelling. The results are compared with experiments concerning each test case. Standard URANS turbulence modelling have shown a quite dissipative character that attenuates the instabilities and the vortex structures related to the dynamic stall. The URANS approach Organised Eddy Simulation (OES) has shown an improved behaviour at the high Reynolds number range. Emphasis is given to the physical analysis of the three-dimensional dynamic stall structure, for which there exist few numerical results in the literature, as far as the Reynolds number range is concerned. This study has shown that the downstroke phases of the pitching motion are subjected to strong three-dimensional turbulence effects along the span, whereas the flow is practically two-dimensional during the upstroke motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号