首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
2.
For high Reynolds numbers asymptotic expansions are constructed of the solution of the axially symmetric wave problem on the surface of a viscous incompressible fluid of infinite depth under the assumption that the tangential stresses on the free surface are of the order 0(1/Re). The principal terms of the asymptotic expansion are solutions of linear partial differential equations. The obtained result is then adapted to the case in which the fluid fills a bounded region whose boundary is a free surface. Some examples are given.  相似文献   

3.
In this paper, the defect of the traditionary boundary layer methods (including the method of matched asymptotic expansions and the method of Visik-Lyusternik) is noted, from those methods we can not construct the asymptotic expansion of boundary layer term substantially. So the method of multiple scales is proposed for constructing the asymptotic expansion of boundary layer term, the reasonable result is obtained. Furthermore, we compare this method with the method used by Levinson, and find that both methods give the same asymptotic expansion of boundary layer term, but our method is simpler.Again, we apply this method to study some known works on singular perturbations. The limitations of those works have been noted, and the asymptotic expansion of solution is constructed in general condition.  相似文献   

4.
A separation criterion, i.e., a definite relationship between the external flow and the boundary layer parameters [1], can be used to estimate the possibility of the origination of separation of a two-dimensional boundary layer. A functional form of the separation criterion has also been obtained for a three-dimensional boundary layer [2] on the basis of dimensional analysis. As in the case of the two-dimensional boundary layer, locally self-similar solutions can be used to determine the specific magnitude of the separation criterion as a function of the values of the governing parameters. Locally self-similar solutions of the two-dimensional laminar boundary-layer equations have been found at the separation point for a perfect gas with a linear dependence of the coefficient of viscosity on the temperature (Ω=1) and Prandtl number P=1 [3, 4]. The influence of blowing and suction has been studied for this case [5]. Self-similar solutions have been obtained for Ω=1, P=0.723 for the limit case of hypersonic perfect gas flow [6]. Locally self-similar solutions of the three-dimensional laminar boundary-layer equations at the separation point are presented in [7] for a perfect gas with Ω=1, P=1. There are no such computations for Ω≠1, P≠1; however, the results of computing several examples for a two-dimensional flow [8] show that the influence of the real properties of a gas can be significant and should be taken into account. Self-similar solutions of the two- and three-dimensional boundary-layer equations at the separation point are found in this paper for a perfect gas with a power-law dependence of the viscosity coefficient on the enthalpy (Ω=0.5, 0.75, 1.0) for different values of the Prandtl number (P=0.5, 0.7, 1.0) in a broad range of variation of the external stream velocity (v 1 2 /2h1* = 0–0.99) and the temperature of the streamlined surface. Magnitudes of the separation criterion for a laminar boundary layer have been obtained on the basis of these data.  相似文献   

5.
The flow patterns in the inlet and outlet conduits have a decisive effect on the safe, stable, and highly efficient operation of the pump in a large pumping station with low head. The numerical simulation of three-dimensional (3D) turbulence flow in conduits is an important method to study the hydraulic performance and conduct an optimum hydraulic design for the conduits. With the analyses of the flow patterns in the inlet and outlet conduits, the boundary conditions of the numerical simulation for them can be determined. The main obtained conclusions are as follows: (i) Under normal operation conditions, there is essentially no pre-swirl flow at the impeller chamber inlet of an axial-flow pump system, based on which the boundary condition at the inlet conduit may be defined. (ii) The circulation at the guide vane outlet of an axial-flow pump system has a great effect on the hydraulic performance of the outlet conduit, and there is optimum circulation for the performance. Therefore, it is strongly suggested to design the guide vane according to the optimum circulation. (iii) The residual circulation at the guide vane outlet needs to be considered for the inlet boundary condition of the outlet conduit, and the value of the circulation may be measured in a specially designed test model.  相似文献   

6.
A formulation is developed to impose pressure-prescribed boundary conditions in the penalty finite element method. Some numerical experiments for the Poiseuille flow problem are performed to compare it with the conventional traction-prescribed boundary condition. Also the incorrectness of the traction-free outlet boundary condition for contained-flows is studied with explanatory numerical examples. Discussion is focused on the inlet and outlet boundary conditions to simulate fully developed flows. Finally, the three-dimensional flow in a bifurcated pipe is analysed with the proposed formulation.  相似文献   

7.
The equations of the turbulent boundary layer contain a small parameter — the reciprocal of the Reynolds number, which makes it possible to carry out an asymptotic analysis of the solutions with respect to that small parameter. Such analyses have been the subject of a number of studies [1–5]. In [2, 5] for closing the momentum equation algebraic Prandtl and turbulent viscosity models were used. In [1, 3, 4] the structure of the boundary layer was analyzed in general form without formulating specific closing hypothesis but under additional assumptions concerning the nature of the asymptotic behavior of the limiting solutions in the various regions.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 106–117, May-June, 1993.  相似文献   

8.
In this paper, simple and consistent open boundary conditions are presented for the numerical simulation of viscous incompressible laminar flows. The present approach is based on an arbitrary Lagrangian-Eulerian particle method using upwind interpolation. Three kinds of inlet/outlet boundary conditions are proposed for particle methods, a pressure specified inlet/outlet condition, a velocity profile specified inlet/outlet condition, and a fully developed flow outlet condition. These inlet/outlet conditions are realized by using boundary particles and modification to the physical value such as velocity. Poiseuille flows, flows over a backward-facing step, and flows in a T-shape branch are calculated. The results are compared with those of mesh-based methods such as the finite volume method. The method presented herein exhibits accuracy and numerical stability.  相似文献   

9.
A relatively simple, yet efficient and accurate finite difference method is developed for the solution of the unsteady boundary layer equations for both laminar and turbulent flows. The numerical procedure is subjected to rigorous validation tests in the laminar case, comparing its predictions with exact analytical solutions, asymptotic solutions, and/or experimental results. Calculations of periodic laminar boundary layers are performed from low to very high oscillation frequencies, for small and large amplitudes, for zero as well as adverse time-mean pressure gradients, and even in the presence of significant flow reversal. The numerical method is then applied to predict a relatively simple experimental periodic turbulent boundary layer, using two well-known quasi-steady closure models. The predictions are shown to be in good agreement with the measurements, thereby demonstrating the suitability of the present numerical scheme for handling periodic turbulent boundary layers. The method is thus a useful tool for the further development of turbulence models for more complex unsteady flows.  相似文献   

10.
The temporal evolutions of small, streamwise elongated disturbances in the asymptotic suction boundary layer (ASBL) and the Blasius boundary layer (BBL) are compared. In particular, initial perturbations localized (δ-functions) in the wall-normal direction are studied, corresponding to an axi-symmetric jet coming out of a plane parallel to the flat plate. Analytical solutions are presented for the wall-normal and streamwise velocities in the ASBL case whereas both analytical and numerical methods are used for the BBL case. The initial position of the perturbation and its spanwise wave number are varied in a parameter study. We present results of maximum amplitudes obtained, the time to reach them, their position and optimal spanwise scales. Free-stream disturbances are shown to migrate towards the wall and reach their (negative) optimum inside the boundary layer. The migration is faster for the ASBL case and a larger amplitude is reached than for the BBL. For perturbations originating inside the boundary layer the amplitudes are overall larger and show the phenomenon of overshoot, i.e. positive amplitudes moving out of the boundary layer. The overall largest amplitudes are obtained for the BBL case, as in other studies, but it is shown that for free-stream disturbances initiated somewhere downstream the leading edge streak growth may be amplified due to suction since in the BBL the disturbance mainly advects above the boundary layer.  相似文献   

11.
Approximate dynamic boundary conditions of different orders are derived for the case of a thin piezoelectric coating layer bonded to an elastic material. The approximate boundary conditions are derived using series expansions of the elastic displacements and the electric potential in the thickness coordinate of the layer. All the expansion functions are then eliminated with the aid of the equations of motion and boundary/interface conditions of the layer. This results in boundary conditions on the elastic material that may be truncated to different orders in the thickness of the layer to obtain approximate boundary conditions. The approximate boundary conditions may be used as a replacement for the piezoelectric layer and thus simplify the analysis significantly. Numerical examples show that the approximate boundary conditions give good results for low frequencies and/or thin piezoelectric layers.  相似文献   

12.
Summary By means of a combined method it is demonstrated for regular perturbation problems how the higher order terms of an asymptotic expansion may be determined from numerical solutions of the non-expanded basic equations.The method is applied to heat transfer effects in a laminar boundary layer and to the analysis of its stability. All first- and second-order coefficients of the problem are determined from numerical solutions of the basic set of equations.  相似文献   

13.
The problem of a general incompressible viscous fluid flow past a flat plate with heat transfer due to forced convection is considered in this paper. The synthetic method developed by Seth is applied to the Navier-Stokes equations and the equation of energy governing the flow to obtain the dynamic and thermal boundary layer solutions as asymptotic limits of an extended field. As a result, new formulas are derived for both the dynamic and thermal boundary layer thicknesses. Also, algorithms for estimating all the parameters involved in the analysis are provided and boundary layer functions based on the new solutions are determined.  相似文献   

14.
Analytical and numerical methods are used to investigate a three-dimensional laminar boundary layer near symmetry planes of blunt bodies in supersonic gas flows. In the first approximation of an integral method of successive approximation an analytic solution to the problem is obtained that is valid for an impermeable surface, for small values of the blowing parameter, and arbitrary values of the suction parameter. An asymptotic solution is obtained for large values of the blowing or suction parameters in the case when the velocity vector of the blown gas makes an acute angle with the velocity vector of the external flow on the surface of the body. Some results are given of the numerical solution of the problem for bodies of different shapes and a wide range of angles of attack and blowing and suction parameters. The analytic and numerical solutions are compared and the region of applicability of the analytic expressions is estimated. On the basis of the solutions obtained in the present work and that of other authors, a formula is proposed for calculating the heat fluxes to a perfectly catalytic surface at a symmetry plane of blunt bodies in a supersonic flow of dissociated and ionized air at different angles of attack. Flow near symmetry planes on an impermeable surface or for weak blowing was considered earlier in the framework of the theory of a laminar boundary layer in [1–4]. An asymptotic solution to the equations of a three-dimensional boundary layer in the case of strong normal blowing or suction is given in [5, 6].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 37–48, September–October, 1980.  相似文献   

15.
The aim of this paper is to prove that the solutions of the primitive equations converge, in the zero viscosity limit, to the solutions of the hydrostatic Euler equations. We construct the solution of the primitive equations through a matched asymptotic expansion involving the solution of the hydrostatic Euler equation and boundary layer correctors as the first order term, and an error that we show to be \({O(\sqrt{\nu})}\). The main assumption is spatial analyticity of the initial datum.  相似文献   

16.
M. M. Rahman 《Meccanica》2011,46(5):1127-1143
This paper presents heat transfer process in a two-dimensional steady hydromagnetic convective flow of an electrically conducting fluid over a flat plate with partial slip at the surface of the boundary subjected to the convective surface heat flux at the boundary. The analysis accounts for both temperature-dependent viscosity and temperature dependent thermal conductivity. The local similarity equations are derived and solved numerically using the Nachtsheim-Swigert iteration procedure. Results for the dimensionless velocity, temperature and ambient Prandtl number within the boundary layer are displayed graphically delineating the effect of various parameters characterizing the flow. The results show that momentum boundary layer thickness significantly depends on the surface convection parameter, Hartmann number and on the sign of the variable viscosity parameter. The results also show that plate surface temperature is higher when there is no slip at the plate compared to its presence. For both slip and no-slip cases surface temperature of the plate can be controlled by controlling the strength of the applied magnetic field. In modelling the thermal boundary layer flow with variable viscosity and variable thermal conductivity, the Prandtl number must be treated as a variable irrespective of flow conditions whether there is slip or no-slip at the boundary to obtain realistic results.  相似文献   

17.
《Comptes Rendus Mecanique》2007,335(9-10):590-605
An asymptotic analysis of the structure of the flow at high Reynolds number around a streamlined body is presented. The boundary layer is turbulent. This question is studied with the successive complementary expansion method, SCEM. The starting point is to look for a uniformly valid approximation (UVA) of the velocity field, including the boundary layer and the external flow. Thanks to the use of generalized expansions, SCEM leads to the theory of interactive boundary layer, IBL. For many years, IBL model has been used successfully to calculate aerodynamic flows. Here, the IBL model is fully justified with rational mathematical arguments. The construction of a UVA of the velocity profile in the boundary layer is also studied. To cite this article: J. Cousteix, J. Mauss, C. R. Mecanique 335 (2007).  相似文献   

18.
The stability of an elastic plate in supersonic gas flow is investigated using asymptotic methods and taking the boundary layer formed on the plate surface into account. It is shown that the effect of the boundary layer can be of two types depending on its profile. In the case of generalized convex profiles (characteristic of accelerated flow) supersonic and subsonic plate oscillations are stabilized and destabilized, respectively. In the case of profiles with a generalized inflection point located in the subsonic part of the layer (characteristic of homogeneous and decelerated flows) supersonic perturbations are destabilized in the thin boundary layer and stabilized when the layer is fairly thick; subsonic perturbations are damped.  相似文献   

19.
The asymptotic solutions of the self-similar equations of two- and three-dimensional boundary layers have been investigated by many authors (see, for example, [1–3]). In [4, 5], asymptotic solutions were found for non-self-similar equations for two-dimensional flow, and the propagation of perturbations near the external edge of the boundary layer was analyzed. In the present paper, asymptotic solutions are obtained for the non-self-similar equations of a three-dimensional laminar boundary layer of an incompressible fluid. It is shown that the conclusion drawn in [5] — that the boundary conditions can be transferred from infinity to a finite distance from the wall — is also true for three-dimensional flow. The obtained solutions explain the experimentally well-known phenomenon of the conservativeness of the secondary currents. The essence of this phenomenon is that a change in the sign of the transverse (along the normal to a streamline of the external flow) pressure gradient is accompanied by a very rapid change in the direction of the secondary flow near the wall, whereas in the upper layers of the boundary layer the direction remains unchanged for a substantial time.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 155–157, September–October, 1979.  相似文献   

20.
In this paper, the aim is to present the results of a new approach for the asymptotic modeling of two-dimensional steady, incompressible, laminar flows in a channel. More precisely, for high Reynolds numbers, the walls of the channel are deformed in such a way that separation is possible. Of course, numerical solutions of Navier–Stokes equations can be calculated but it is believed that an asymptotic analysis helps in the understanding of the flow structure. Numerical solutions of Navier–Stokes equations are compared with solutions of asymptotic models included in a more general model called global interactive boundary layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号