首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fuel pollutant migrating in a water flow throughout a porous medium is distributed between the moving (continuous) and residual (discontinuous) phases. Usually, there is an equilibrium condition between these phases. In this study, the migration of a fuel slug confied within free boundaries moving in the porous medium is considered. This type of fuel migration pertains to circumstances in which convective fuel transport dominates fuel dispersion when fuel saturation approaches zero. A one-dimensional self-similar model is developed, describing the movement of fuel saturation fronts in a porous medium against and with the water flow direction. Several analytical solutions are found revealing the effects of the pore size, fuel viscosity, fuel mass, and the capillary number on the fuel migration in the porous medium.  相似文献   

2.
In many groundwater systems, fluid density and viscosity may vary in space and time as a function of changes in concentration and temperature of the fluid. When dense groundwater plumes interact with less dense ambient groundwater, these density variations can significantly affect flow and transport processes. Under certain conditions, gravitational instabilities in the form of lobe-shaped fingers can occur. This process is significant because it can lead to more rapid and spatially extensive solute transport. This paper presents new experiments carried out in a sand filled glass flow container under both fully saturated and variably-saturated conditions and focuses upon the processes that occur at the capillary fringe and below the water table, as affected by a dense contaminant plumes migration through the unsaturated zone. Source fluids stained with Rhodamine-WT were introduced at the upper boundary of the tank at a range of low and high densities. In addition to the fluid density gradients and porous medium permeability that determine the onset conditions for instabilities in fully saturated experiments, volumetric water content appears critical in the variably-saturated laboratory runs. Plume behaviour at the water table appears dependent upon the density of the fluid that accumulates there. For neutral and low density fluids, plumes accumulate at the water table and then spread laterally above it and the water table forms a barrier to further vertical flow as pore water velocities reduce with increasing water content. For medium and high density fluids, vertical movement continues as instabilities form at the capillary fringe and fingers begin to grow at the water table boundary and move downwards into the saturated zone. In these cases, lateral spreading of the plume is small. Despite these more qualitative observations, the exact nature of the relevant stability criteria for the onset and growth of instabilities in variably-saturated porous media presently remain unclear. All experimental results suggest, however, that the unsaturated zone and position of the water table must be considered in contaminant studies in order to predict the migration pathways, rates and ultimate fate of dense contaminant plumes. It is possible that the results of experiments presented in this paper could form a useful basis for the testing of variable-density (and variably-saturated) groundwater flow and solute transport numerical codes because they offer controlled physical laboratory analogs for comparison. They also provide a strong basis for the development of more rigorous mathematical formulations that are likely to be either developed or tested using numerical flow and solute transport simulators.  相似文献   

3.
Magyari  E.  Keller  B. 《Transport in Porous Media》2003,51(2):227-230
External free convection boundary-layer flows are usually treated by neglecting the effect of viscous dissipation. This assumption always results in a non-parallel flow, besides a strong parallel component also a weak transversal component of the (steady) velocity field occurs. The present paper shows, however, that the weak opposing effect of the buoyancy forces due to heat release by viscous dissipation, can give rise along a cold vertical plate adjacent to a fluid saturated porous medium to a strictly parallel steady free convection flow. This boundary-layer flow is described by an algebraically decaying exact analytical solution of the basic balance equations.  相似文献   

4.
Flow driven by an externally imposed pressure gradient in a vertical porous channel is analysed. The combined effects of viscous dissipation and thermal buoyancy are taken into account. These effects yield a basic mixed convection regime given by dual flow branches. Duality of flow emerges for a given vertical pressure gradient. In the case of downward pressure gradient, i.e. upward mean flow, dual solutions coincide when the intensity of the downward pressure gradient attains a maximum. Above this maximum no stationary and parallel flow solution exists. A nonlinear stability analysis of the dual solution branches is carried out limited to parallel flow perturbations. This analysis is sufficient to prove that one of the dual solution branches is unstable. The evolution in time of a solution in the unstable branch is also studied by a direct numerical solution of the governing equation.  相似文献   

5.
We present an analytical investigation of the effect of vertical throughflow on the onset of convection, induced by internal heating, in a composite porous medium consisting of two horizontal layers. If convection is induced by internal heating, the bulk of the convection occurs in the upper half of the layer where the buoyancy force is destabilizing. For the case of heterogeneous porous medium, if the permeability increases in the upward direction, or if the thermal conductivity decreases in the upward direction, instability is increased. It is also found that upward throughflow is stabilizing but a modest amount of downward throughflow is destabilizing.  相似文献   

6.
Particle migration in a horizontal flow of dilute suspension through a vertical slot with porous walls is studied using the two-continua approach. The lateral migration is induced by two opposite effects: an inertial lift force due to particle settling and directed toward the slot centre-line, and a drag due to leak-off entraining particles toward the walls. An expression for the inertial lift on a settling particle in a horizontal channel flow found recently is generalized to the case of a low leak-off velocity. The evolution of an initial uniform particle concentration profile is studied within the full Lagrangian approach. Four migration regimes are found differing by the direction of particle migration and numbers of equilibrium positions. Conditions of the regime change and a critical value of dimensionless leak-off velocity for particle deposition on the walls are obtained analytically. Suspension flows with zones where the particle concentration is zero or increases infinitely, are studied numerically.  相似文献   

7.
In a fluid-saturated porous medium, dissolved species advect at the pore velocity, while thermal retardation causes heat to move at the Darcy velocity. The Darcy model with the Boussinesq approximation in a square medium with a porosity of = 0.01 subject to two sources of buoyancy is used, to study numerically the dynamics of this so-called double-advective instability. The vertical walls of the medium are impermeable and adiabatic, while Dirichlet boundary conditions are imposed on the horizontal walls such that the medium is heated and salted from below. For an increasing ratio between chemical and thermal buoyancy, while keeping the thermal buoyancy fixed, a transition from a steady to a chaotic convective solution is observed. At the transition a stable limit cycle is found, suggesting that the transition takes the form of a Hopf bifurcation. The dynamics of the chaotic flow is characterized by irregular transitions between nonlayered and layered flow patterns, as a result of the spontaneous formation and disappearance of gravitationally stable interfaces. These interfaces temporarily divide the domain in layers of distinct solute concentration and lead to a significant reduction of kinetic energy and vertical heat and solute fluxes. The stability of an interface is described by a balance between the viscous drag forces in the convective layers and the buoyancy force associated with the density interface.  相似文献   

8.
Non-Darcy film condensation over a vertical flat plate within a porous medium is considered. The Forchheimer extended Darcy model is adopted to account for the non-Darcy effects on film condensation in the presence of both gravity and externally forced flow. A general similarity transformation is proposed upon introducing a modified Peclet number based on the total velocity of condensate, resulting from both gravitational force and externally forced flow. This general treatment makes it possible to obtain all possible similarity solutions including the asymptotic results in the four different limiting regimes, namely, Darcy forced convection regime, Forchheimer forced convection regime, Darcy body force predominant regime and Forchheimer body force predominant regime. Appropriate dimensionless groups for distinguishing these asymptotic regimes are found to be the micro-scale Grashof and Reynolds numbers based on the square root of the permeability of the porous medium. Correspondingly, the non-Darcy effect on the heat transfer rate are investigated in terms of these micro-scale dimensionless numbers.  相似文献   

9.
We investigate the fully developed flow in a fluid-saturated porous medium channel with an electrically conducting fluid under the action of a parallel Lorentz force. The Lorentz force varies exponentially in the vertical direction due to low fluid electrical conductivity and the special arrangement of the magnetic and electric fields at the lower plate. Exact analytical solutions are derived for fluid velocity and the results are presented in figures. All these flows are new and are presented for the first time in the literature.  相似文献   

10.
Boundary layer solutions are presented to study the effects of buoyancy on forced convection in an axisymmetric stagnation flow over a vertical cylinder with arbitrary surface heat flux variations. Numerical solutions are given for the governing momentum and energy equations. Two flow regions, namely, the buoyancy-assisted and buoyancy-opposed cases are analyzed. It is observed that the wall shear stress and surface heat transfer rate increase or decrease with the buoyancy force parameter depending upon the flow regime being buoyancy-assisted or buoyancy-opposed.  相似文献   

11.
This paper aims at showing that to prescribe a flow rate at the inlet section of a vertical channel with heated walls leads to surprising and counterintuitive physical solutions, especially when the problem is modeled as elliptical. Such an approach can give rise to the onset of recirculation cells in the entry region while the heat transfer is slightly increased under the influence of the buoyancy force. We suggest an alternative model based on more realistic boundary conditions based on a prescribed total pressure at the inlet and a fixed pressure at the outlet sections. In this case, the pressure and buoyancy forces act effectively in the same direction and, the concept of buoyancy aiding convection makes sense. The numerical results emphasize the large differences between solutions based on prescribed inlet velocity and those obtained with the present pressure-based boundary conditions.  相似文献   

12.
The unsteady free convection flow over an infinite vertical porous plate, which moves with time-dependent velocity in an ambient fluid, has been studied. The effects of the magnetic field and Hall current are included in the analysis. The buoyancy forces arise due to both the thermal and mass diffusion. The partial differential equations governing the flow have been solved numerically using both the implicit finite difference scheme and the difference-differential method. For the steady case, analytical solutions have also been obtained. The effect of time variation on the skin friction, heat transfer and mass transfer is very significant. Suction increases the skin friction coefficient in the primary flow, and also the Nusselt and Sherwood numbers, but the skin friction coefficient in the secondary flow is reduced. The effect of injection is opposite to that of suction. The buoyancy force, injection and the Hall parameter induce an overshoot in the velocity profiles in the primary flow which changes the velocity gradient from a negative to a positive value, but the magnetic field and suction reduce this velocity overshoot.  相似文献   

13.
The free convection flow along a vertical porous plate with transverse sinusoidal suction velocity distribution is investigated. Due to this type of suction velocity at the plate the flow becomes three dimensional one. For the asymptotic flow condition, the wall shear stress in the direction of main flow for different values of buoyancy parameter G is obtained. For G=0, the skin friction in the direction of free stream and the rate of heat transfer from the plate to the fluid are given. It is found that these results differ from those obtained by Gersten and Gross.  相似文献   

14.
Stratified environmental flows near boundaries can have a horizontal mean shear component, orthogonal to the vertical mean density gradient. Vertical transport, against the stabilizing force of gravity, is possible in such situations if three-dimensional turbulence is sustained by the mean shear. A model problem, water with a constant mean density gradient flowing in a channel between parallel vertical walls, is examined here using the technique of large eddy simulation (LES). It is found that, although the mean shear is horizontal, the fluctuating velocity field has significant vertical shear and horizontal vorticity, thereby causing small-scale vertical mixing of the density field. The vertical stirring is especially effective near the boundaries where the mean shear is large and, consequently, the gradient Richardson number is small. The mean stratification is systematically increased between cases in our study and, as expected, the buoyancy flux correspondingly decreases. Even so, horizontal mean shear is found to be more effective than the well-studied case of mean vertical shear in inducing vertical buoyancy transport as indicated by generally larger values of vertical eddy diffusivity and mixing efficiency.  相似文献   

15.
 The steady mixed convection flow over a vertical wedge with a magnetic field embedded in a porous medium has been investigated. The effects of the permeability of the medium, surface mass transfer and viscous dissipation on the flow and temperature fields have been included in the analysis. The coupled nonlinear partial differential equations governing the flow field have been solved numerically using the Keller box method. The skin friction and heat transfer are found to increase with the parameters characterizing the permeability of the medium, buoyancy force, magnetic field and pressure gradient. However the effect of the permeability and magnetic field on the heat transfer is very small. The heat transfer increases with the Prandtl number, but the skin friction decreases. The buoyancy force which assists the forced convection flow causes an overshoot in the velocity profiles. Both the skin friction and heat transfer increase with suction and the effect of injection is just the reverse. Received on 21 May 1999  相似文献   

16.
Laminar steady free surface flow having one permeable bounding wall is investigated in the presence of buoyancy force. The experimental results of Rajasekhara [1] were found to be in good agreement with our theoretical results based on a model which admits slip-velocity at the porous material. The effect of buoyancy force is to increase the velocity distribution in the case of greater heat addition (No>0) and to decrease it by a greater cooling (No<0). As a result, the mass flow rate increases and the friction factor decreases for No>0 and the opposite is true for No<0. We further find that the effect of buoyancy force on the temperature distribution is to increase its magnitude. In particular, we find that the rate of heat transfer at its nominal surface is increased in the case of heating (No>0) of flow.  相似文献   

17.
We investigate in this article, the fully developed flow in a fluid-saturated channel filled with a Darcy–Brinkman–Forchheimer porous medium, which is conducted with an electrically varying parallel Lorentz force. The Lorentz force varies exponentially in the vertical direction due to low fluid electrical conductivity and the special arrangement of the magnetic and electric fields at the lower plate. With the homotopy analysis method (HAM), a particularly effective technique in solving nonlinear problems, analytical approximation series solutions with high accuracy are derived for fluid velocity and the results are illustrated in form of figures. All these flows are new and are presented for the first time in the literature.  相似文献   

18.
The effects of buoyancy, produced by a uniform vertical concentration gradient and body force, on a homogeneous turbulent field accompanied by a first-order chemical reaction, are analysed by considering a simplified model. A system of two-point correlation equations, which contains mean concentration gradient and body force terms, is constructed from the Navier-Stokes, convective diffusion and continuity equations. By well-known methods, these equations are converted into equations for the spectrum functions in the wave-number space and solutions for different spectral tensors are obtained by neglecting the contributions of the triple correlation terms. For carrying out the numerical calculations, it is assumed that the turbulence is initially isotropic and the concentration fluctuations initially zero. It turns out that the turbulence decays with time, although the buoyancy forces do alter the rate of decay. The buoyancy forces can either extract energy from the turbulent field or feed energy into it, depending upon the direction of the body force and the concentration gradient. Spectra are displayed graphically for several values of the reaction rate parameter for stabilizing, as well as destabilizing, buoyancy forces.  相似文献   

19.
Combined heat and mass transfer in free, forced and mixed convection flows along a porous wedge with internal heat generation in the presence of uniform suction or injection is investigated. The boundary-layer analysis is formulated in terms of the combined thermal and solute buoyancy effect. The flow field characteristics are analyzed using the Runge-Kutta-Gill method, the shooting method, and the local nonsimilarity method. Due to the effect of the buoyancy force, power law of temperature and concentration, and suction/injection on the wall of the wedge, the flow field is locally nonsimilar. Numerical calculations up to third-order level of truncation are carried out for different values of dimensionless parameters as a special case. The effects of the buoyancy force, suction, heat generation, and variable wall temperature and concentration on the dimensionless velocity, temperature, and concentration profiles are studied. The results obtained are found to be in good agreement with previously published works.  相似文献   

20.
This paper deals with a critical evaluation of various finite element models for low-viscosity laminar incompressible flow in geometrically complex domains. These models use Galerkin weighted residuals UVP, continuous penalty, discrete penalty and least-squares procedures. The model evaluations are based on the use of appropriate tensor product Lagrange and simplex quadratic triangular elements and a newly developed isoparametric Hermite element. All of the described models produce very accurate results for horizontal flows. In vertical flow domains, however, two different cases can be recognized. Downward flows, i.e. when the gravitational force is in the direction of the flow, usually do not present any special problem. In contrast, laminar flow of low-viscosity Newtonian fluids where the gravitational force is acting in the direction opposite to the flow presents a difficult case. We show that only by using the least-squares method in conjunction with C1-continuous Hermite elements can this type of laminar flow be modelled accurately. The problem of smooth isoparametric mapping of C1 Hermite elements, which is necessary in dealing with geometrically complicated domains, is tackled by means of an auxiliary optimization procedure. We conclude that the least-squares method in combination with isoparmetric Hermite elements offers a new general-purpose modelling technique which can accurately simulate all types of low-viscosity incompressible laminar flow in complex domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号