首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhi Qi  Li Li  Zhi Ping Xu 《Particuology》2022,(5):121-133
2D nanomaterials are widely investigated for biomedical applications,attributed to their large specific surface area,high therapeutic loading capacity,and uniqu...  相似文献   

2.
压电纳米材料具有机电耦合性强、功耗低和反应灵敏等独特性能,且能满足工程对压电器件微型化的要求,从而在传感、微纳米机电系统和柔性电子器件等领域展现出了广阔的应用前景. 高比表面积引起的表面效应是压电纳米材料最重要的结构特征之一,其对材料的整体力学性质起着决定性的作用.表面效应会导致应力和电位移在压电表面的两侧出现间跃,故传统的力电场连续性条件将不再适用.考虑表面为不计厚度却拥有独立材料参数的薄层,采用表面压电模型计及表面弹性、表面压电性、表面介电性和表面密度的影响,本文研究了压电纳米板中SH型导波的传播特性,给出了板边界处的非典型力电平衡条件,得到了频散方程的解析表达,并结合数值算例详细讨论了表面材料参数和结构尺寸对对称和反对称频散模态的影响.结果表明:SH型导波在压电纳米板中的传播具有明显的尺寸相关性,即当板厚很小时,表面效应会显著改变其频散行为,而随着板厚的增大,表面效应的影响会不断减弱直至可忽略不计.   相似文献   

3.
谭雅文  江进武 《力学进展》2020,50(1):202005
近些年二维纳米材料得到了大量的研究,其中一个热点研究方向是将不同的二维纳米材料堆垛成纳米异质结构,从而实现多功能的纳米器件.这些二维纳米材料可以从面外和面内两个方向上进行堆垛从而形成两类不同的异质结构.在关于这类二维纳米材料及其异质结构的理论研究中,原子间的相互作用起到类似于连续介质力学中本构关系的作用.因此学者提出了多种方案用于描写原子间相互作用,主要包括第一性原理计算和经验势能模型等.本文主要是对比和分析各种描写二维纳米材料及其异质结构的常见经验势能模型,从而为研究人员选择相互作用模型提供一些参考.   相似文献   

4.
传统的油基润滑剂在使用过程中通常存在冷却性能差,易造成环境污染等问题,近年来绿色环保的水基润滑逐渐受到科学家们的关注. 水由于自身黏度低且易挥发等特点,其作为润滑剂时润滑效果不佳,因此亟待发展高效的水基润滑添加剂来改善其摩擦磨损性能. 在本文中,作者综述了近年来石墨烯基纳米材料的功能化改性及其作为水基润滑添加剂的最新研究进展,总结了其在摩擦过程中的润滑机理,并对目前石墨烯水基润滑添加剂存在的问题及今后重点研究内容进行了展望.   相似文献   

5.
高扬 《力学学报》2021,53(4):929-943
以石墨稀为代表, 二维材料有着诸多优异的性质, 在下一代电子器件等领域拥有广阔的应用前景. 目前绝大多数关于二维材料的研究都集中在其电子学和光学的性质和应用, 对于其力学性质的研究则相对欠缺, 而力学性质在二维材料的研究和应用中都有着至关重要的意义. 原子力显微镜是低维材料力学性质表征的主要手段, 例如基于原子力显微镜的纳米压痕技术. 本文首先简要介绍了二维材料的基本背景以及原子力显微镜的工作原理. 进一步展示了纳米压痕技术的工作原理和理论背景, 并回顾了利用纳米压痕技术研究二维材料面内力学性质的相关实验和理论工作, 同时探讨了原子力显微镜在表征二维材料力学性能中存在的测量误差及来源. 由于二维材料展现出强烈的各向异性, 纳米压痕技术在能够很好地测量二维材料面内力学性质的同时, 对于二维材料层间力学性质表征等方面存在明显的局限性. 第三部分介绍了一种全新的基于原子力显微镜的埃(?)压痕技术, 该技术能够将形变尺度控制在0.1 nm以内, 从而精确地表征和调控二维材料的层间范德华作用力, 即层间力学性质. 作者在第三部分介绍了通过埃压痕技术表征和调控的石墨烯、氧化石墨烯等二维材料的层间力学性质. 最后简要介绍了范德华异质结材料的基本性质, 探讨了埃压痕技术在该材料力学性质研究中的潜在应用.   相似文献   

6.
Analysis of the mechanical behavior of nanostructures has been very challenging. Surface energy and nonlocal elasticity of materials have been incorporated into the traditional continuum analysis to create modified continuum mechanics models. This paper reviews recent advancements in the applications of such modified continuum models in nanostructures such as nanotubes, nanowires, nanobeams,graphenes, and nanoplates. A variety of models for these nanostructures under static and dynamic loadings are mentioned and reviewed. Applications of surface energy and nonlocal elasticity in analysis of piezoelectric nanomaterials are also mentioned. This paper provides a comprehensive introduction of the development of this area and inspires further applications of modified continuum models in modeling nanomaterials and nanostructures.  相似文献   

7.
TiO2 compounds possess relatively high adsorption abilities and exhibit high photocatalytic activities that exhibit potential for the destruction of organic pollutants in natural and waste waters.Nanostructured potassium polytitanates modified using transition metals and their oxides/hydroxides generate new nanomaterials that operate in the visible spectral range.This study presents the synthesis and investigation of the structure,composition and photocatalytic activity of powdered nanoscale quasi-amorphous potassium polytitanates particles modified with iron,zinc,copper,cobalt and nickel sulfate in aqueous solutions.All of the powders investigated in this work exhibit a high adsorption capacity for methylene blue dye(15-20mg/g) related to the welldeveloped surface of the layered potassium polytitanate particles.Introducing transition metals and their oxides/hydroxides influences the electronic structure of the obtained systems.A high photocatalytic activity was observed for systems containing iron,zinc,nickel and their oxides/hydroxides in the ultraviolet and visible ranges.  相似文献   

8.
Transfer printing is an important and versatile tool for deterministic assembly and integration of micro/nanomaterials on unusual substrates, with promising applications in fabrication of stretchable and flexible electronics. The shape memory polymers (SMP) with triangular surface relief structures are introduced to achieve large, reversible adhesion, thereby with potential applications in temperature-controlled transfer printing. An analytic model is established, and it identifies two mechanisms to increase the adhesion: (1) transition of contact mode from the triangular to trapezoidal configurations, and (2) explicit enhancement in the contact area. The surface relief structures are optimized to achieve reversible adhesion and transfer printing. The theoretical model and results presented can be exploited as design guidelines for future applications of SMP in reversible adhesion and stretchable electronics.  相似文献   

9.
As a category of nanomaterials with excellent catalytic efficiency, great substrate specificity, and high recovery efficiency, nanozymes have attracted increasing attention in various biomedical applications. Currently, numbers of nanozyme-assisted strategies have been well developed for the theranostics of various diseases by taking advantages of their multienzyme-like characteristics, low cost, and high stability. As the most prevalent oral diseases, oral infection poses a global hazard to human health, and current therapeutic options are insufficient to resolve all the clinical issues. Based on their admirable activity, nanozymes can be frequently employed in the identification and treatment of various oral infectious disorders. Herein, we provide a brief review focused on the classification of nanozymes, analyses of nanozyme-based antibacterial mechanism, research progress in oral bacterial control, and representative studies of nanozyme-assisted oral inflammatory management. Moreover, major challenges and potential opportunities regarding the use of nanozymes in oral infectious diseases are also highlighted and discussed. This review not only summarizes the recent studies of nanozymes in oral infection but also promotes the further development of enzyme-mimetic strategies towards various oral diseases.  相似文献   

10.
Nanofluid (NF) materials consisting of glycerol (Gly) and different inorganic nano oxides (TiO2, ZnO, Al2O3, and SiO2 for the oxides concentration of 0.01 wt% to the weight of Gly base fluid) were prepared by a two-step method through ultrasonic cavitation process. These nanofluids were investigated by employing an X-ray diffractometer (XRD), ultraviolet–visible (UV–Vis) spectrophotometer, 20 Hz to 1 MHz frequency range dielectric relaxation spectroscopy (DRS), ultrasonic interferometer, and rotational viscometer. The multiphysics of these nanofluids includes structural and optical properties, dielectric permittivity, electrical conductivity, conductivity relaxation, ultrasound velocity, adiabatic compressibility, acoustic impedance, viscosity, density, thermal conductivity, and viscoacoustic relaxation were characterized. The XRD patterns identified monodispersed and stable suspensions of these different characteristic nanoparticles in the hydrogen-bonded 3D supramolecular structure of ultra-high viscous glycerol fluid which were supported by their UV–Vis absorbance analyses. The energy band gap values of the TiO2 and ZnO containing nanofluids were found primarily ruled by the characteristic optical properties of these oxides nanomaterials. The complex dielectric and various electrical functions studied at 25 °C revealed that the suspension of different oxide nanoparticles in the glycerol fluid increased the static permittivity whereas reduced the direct current electrical conductivity which showed strong conductivity relaxation process dependence. The rheological measurements of the formulated nanofluids were performed over a shear rate range of 0.4–40 s−1 at temperatures of 25–55 °C. The linear relationship between shear rate and shear stress and also the shear rate-independent viscosity revealed the Newtonian behaviour of these nanofluids. The shear viscosity non-linearly decreased with the increase of temperature and exhibited the Arrhenius behaviour for all different oxides containing Gly-based nanofluids. The acoustic parameters of the nanofluids were altered unevenly with types of nano oxides and inferred some structure-property correlations. The promising technologically useable properties of these nanofluids were expected to impact their potential applications in optoelectronics, UV-blocking, sensing, nanodielectrics, energy storing and electric insulation, heat transfer systems, and also in materials processing for the development of innovative soft condensed devices.  相似文献   

11.
Manufactured nanomaterials with unique properties have been extensively applied in various industrial, agricultural or medical fields. However, some of the properties have been identified to be closely related to nanomaterial toxicity. The “nano-paradox” has aroused concerns over the use and development of nanotechnology, which makes it difficult for regulatory agencies to regulate nanomaterials. The key to fulfilling proper nanomaterial regulation lies in the adequate understanding of the impact of nanomaterial properties on nano-bio interactions. To this end, we start the present work with a brief introduction to nano-bio interactions at different levels. Based on that, how key toxicity-associated properties of manufactured nanomaterials (i.e., size, shape, chemical composition, surface properties, biocorona formation, agglomeration and/or aggregation state, and biodegradability) impact their toxicokinetics, cellular uptake, trafficking and responses, and toxicity mechanisms is deeply explored. Moreover, advanced analytical methods for studying nano-bio interactions are introduced. Furthermore, the current regulatory and legislative frameworks for nanomaterial-containing products in different regions and/or countries are presented. Finally, we propose several challenges facing the nanotoxicology field and their possible solutions to shed light on the safety evaluation of nanomaterials.  相似文献   

12.
新的结构布局在延展性要求极高的器件中具有很大的应用潜力, 而使用较成熟的刚性技术制成的器件很难达到延展性要求. 将柔性技术应用到刚性电路中产生具有相同性能且能拉伸、压缩和弯曲的柔性集成电路, 这在健康监测器和表皮电子系统等领域具有重要的应用. 优化柔性电路结构, 研究其力学性能能提高系统的延展性. 本文对这些系统的应用、柔性电路的结构布局、力学行为进行总结概述. 最后, 就柔性电子器件未来研究的方向提出几点观点.  相似文献   

13.
Kernels for non-local elasticity are in general obtained from phonon dispersion relations. However, non-local elastic kernels are in the form of three-dimensional (3D) functions, whereas the dispersion relations are always in the form of one-dimensional (1D) frequency versus wave number curves corresponding to a particular wave direction. In this paper, an approach to build 2D and 3D kernels from 1D phonon dispersion data is presented. Our particular focus is on isotropic media where we show that kernels can be obtained using Fourier–Bessel transform, yielding axisymmetric kernel profiles in reciprocal and real spaces. These kernel functions are designed to satisfy the necessary requirements for stable wave propagation, uniformity of nonlocal stress and stress regularization. The proposed concept is demonstrated by developing some physically meaningful 2D and 3D kernels that will find useful applications in nonlocal mechanics. Relative merits of the kernels obtained via proposed methods are explored by fitting 1D kernels to dispersion data for Argon and using the kernel to understand the size effect in non local energy as seen from molecular simulations. A comparison of proposed kernels is made based on their predictions of stress field around a crack tip singularity.  相似文献   

14.
There is increasing recognition that some nanomaterials may pose a risk to human health and the environment. Moreover, the industrial use of the novel engineered nanomaterials (ENMs) increases at a higher rate than data generation for hazard assessment; consequently, many of them remain untested. The large number of nanomaterials and their variants (e.g., different sizes and coatings) requiring testing and the ethical pressure towards nonanimal testing means that in a first instance, expensive animal bioassays are precluded, and the use of (quantitative) structure–activity relationships ((Q)SARs) models as an alternative source of (screening) hazard information should be explored. (Q)SAR modelling can be applied to contribute towards filling important knowledge gaps by making best use of existing data, prioritizing the physicochemical parameters driving toxicity, and providing practical solutions for the risk assessment problems caused by the diversity of ENMs. This paper covers the core components required for successful application of (Q)SAR methods to ENM toxicity prediction, summarizes the published nano-(Q)SAR studies, and outlines the challenges ahead for nano-(Q)SAR modelling. It provides a critical review of (1) the present availability of ENM characterization/toxicity data, (2) the characterization of nanostructures that meet the requirements for (Q)SAR analysis, (3) published nano-(Q)SAR studies and their limitations, (4) in silico tools for (Q)SAR screening of nanotoxicity, and (5) prospective directions for the development of nano-(Q)SAR models.  相似文献   

15.
There is increasing recognition that some nanomaterials may pose a risk to human health and the environment.Moreover,the industrial use of the novel engineered nanomaterials(ENMs) increases at a higher rate than data generation for hazard assessment;consequently,many of them remain untested.The large number of nanomaterials and their variants(e.g.,different sizes and coatings) requiring testing and the ethical pressure towards nonanimal testing means that in a first instance,expensive animal bioassays are precluded,and the use of(quantitative) structure-activity relationships((Q)SARs) models as an alternative source of(screening) hazard information should be explored.(Q)SAR modelling can be applied to contribute towards filling important knowledge gaps by making best use of existing data,prioritizing the physicochemical parameters driving toxicity,and providing practical solutions for the risk assessment problems caused by the diversity of ENMs.This paper covers the core components required for successful application of(Q)SAR methods to ENM toxicity prediction,summarizes the published nano-(Q)SAR studies,and outlines the challenges ahead for nano-(Q)SAR modelling.It provides a critical review of(1) the present availability of ENM characterization/toxicity data,(2) the characterization of nanostructures that meet the requirements for(Q)SAR analysis,(3) published nano-(Q)SAR studies and their limitations,(4)in silico tools for(Q)SAR screening of nanotoxicity,and(5) prospective directions for the development of nano-(Q)SAR models.  相似文献   

16.
以石墨烯为代表的二维材料因其原子级厚度、独特物理性质,成为近年来物理、化学、材料交叉学科的研究热点,在合成制备、结构表征、应用开发等方面的研究工作表明其在微纳机电系统、光电器件与功能复合材料领域有广泛且重要的应用前景。然而,由于二维材料结构与尺度的独特性,在其基本物性的理解方面仍存在许多未解决的问题,尤其是力学性能的表征,面临着诸多挑战。本文综述了二维材料本征力学性质和界面力学行为的微纳测试与表征技术的最新进展,例如纳米压痕技术、微孔鼓泡法等,并详细探讨了影响二维材料力学性能及行为的主要因素,分析了其微观尺度下的作用机制,以期通过物理或化学手段实现力学性能的调控。  相似文献   

17.
苏飞  何小元  谢惠民  戴福隆 《实验力学》2002,17(Z1):192-205
电子封装件在热-机械载荷作用下力学行为(尤其是热应力)的表征对于其机械可靠性的评价,失效分析和封装工艺的改进具有重要的意义.本文对目前该领域内主要的实验方法进行了简要的介绍,每项主要实验技术的优缺点、适用范围及其最新的发展及应用等都做了必要的阐述.这些实验技术与有限元方法的结合(杂交法)是探索电子封装件机械可靠性的最有效的方法并且代表着改领域的发展方向.  相似文献   

18.
19.
电子工业的不断发展促进了电子器件的微小型化,作为新型产品设计基础的微电子器件可靠 性分析成为人们非常关注的问题. 力学参数的测量可以为可靠性评价提供有价值的实验依据. 概括总结了显微云纹技术的发展,主要介绍了云纹干涉法和扫描显微镜云纹方法及其在 微电子器件全场变形场测量中的应用.  相似文献   

20.
SPD纳米材料制备方法及其力学特性   总被引:5,自引:0,他引:5  
剧烈塑性变形(severe plastic deformation, SPD)纳米化技术是近年来发展的一种力致材料纳米化方法.该方法克服了由粉体压合法带来的残余空隙、球磨法带来的杂质等不足,并且适用于不同形状尺寸的金属、合金、金属间化合物等,因此受到了越来越多的关注.介绍了SPD纳米材料的制备方法及相关纳米材料力学性能研究的现状,并展望了对SPD力致纳米材料的研究趋势.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号