首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The compositional distribution within aggregates of a given size is essential to the functionality of composite aggregates that are usually enlarged by rapid Brownian coagulation. There is no analytical solution for the process of such two-component systems. Monte Carlo method is an effective numerical approach for two-component coagulation. In this paper, the differentially weighted Monte Carlo method is used to investigate two-component Brownian coagulation, respectively, in the continuum regime, the free-molecular regime and the transition regime. It is found that (1) for Brownian coagulation in the continuum regime and in the free-molecular regime, the mono-variate compositional distribution, i.e., the number density distribution function of one component amount (in the form of volume of the component in aggregates) satisfies self-preserving form the same as particle size distribution in mono-component Brownian coagulation; (2) however, for Brownian coagulation in the transition regime the mono-variate compositional distribution cannot reach self-similarity; and (3) the bivariate compositional distribution, i.e., the combined number density distribution function of two component amounts in the three regimes satisfies a semi self-preserving form. Moreover, other new features inherent to aggregative mixing are also demonstrated; e.g., the degree of mixing between components, which is largely controlled by the initial compositional mass fraction, improves as aggregate size increases.  相似文献   

2.
采用泰勒展开矩方法对二维瑞利-贝纳德热对流系统(1×106 ≤Ra ≤1 ×108) 中纳米颗粒群的混合和凝并特性进行了数值模拟. 结果显示颗粒群随时间演化经历了扩散阶段、混合阶段、充分混合阶段3 个阶段, 随着颗粒群混合和凝并的进行, 颗粒数目浓度减少, 颗粒群的平均体积增大; 得到了颗粒分布函数各特征量与温度相关系数以及各特征量的空间分布标准偏差在3 个阶段的不同特征; 得到了颗粒分布函数各阶矩以及平均体积长时间演化的渐近行为, 结果与零维渐近解析解一致. 最后, 本文进一步研究了无量纲数(包括瑞利数Ra, 斯密特数ScM, 达姆科勒数Da) 对颗粒群达到自保持分布时间的影响, 发现该时间随着Ra和ScM的增大呈对数率减小, 随着Da的增大呈线性增大  相似文献   

3.
The evolution equations of moments for the Brownian coagulation of nanoparticles in both continuum and free molecule regimes are analytically studied. These equations are derived using a Taylor-expansion technique. The self-preserving size distribution is investigated using a newly defined dimensionless parameter, and the asymptotic values for this parameter are theoretically determined. The dimensionless time required for an initial size distribution to achieve self-preservation is also derived in both regimes. Once the size distribution becomes self-preserving, the time evolution of the zeroth and second moments can be theoretically obtained, and it is found that the second moment varies linearly with time in the continuum regime. Equivalent equations, rather than the original ones from which they are derived, can be employed to improve the accuracy of the results and reduce the computational cost for Brownian coagulation in the continuum regime as well as the free molecule regime.  相似文献   

4.
于明州  江影  张凯 《力学学报》2011,43(3):447-452
湍动流场中剪切凝并是导致微纳米尺度颗粒系统非稳定性的主要机理. 耦合相应的湍流计算 模型, Smoluchowski平均场理论可以有效地解决该颗粒系统的时空演化问题. 把泰 勒展开矩方法(TEMOM)应用于微纳米尺度颗粒剪切碰撞问题, 重点研究湍动剪切条件下, Smoluchowski方程在矩方法框架内的封闭问题, 并进一步分析计算精度与展开阶数的关系. 结果表明, 所提部分四阶泰勒展开矩方法模型能以较高精度对微纳米尺度湍动剪切凝并 问题进行理论分析, 且证实微纳米尺度颗粒系统在湍动剪切凝并机理控制下存在拟自保持分 布状态特性.  相似文献   

5.
This study investigates the dynamics of flocculation and transport of solid particles suspended in a liquid propellant. Polydisperse particles with lognormal size distribution are considered. Collision of particles is presumed to be controlled by upward velocity differential and Brownian motion. These mechanisms are enhanced by the van der Waals force. Flocculation of the particles is described using the continuous form of the Smoluchowski equation. Upward transport of the particles is specified via a convection term. The general dynamics of the system is governed by a nonlinear transient partial integro-differential equation which is solved numerically. The technique employed is based on discretizing the size distribution function using orthogonal collocation on finite elements. This is combined with a finite difference discretization of the physical domain, and an explicit Runge–Kutta–Fehlberg time marching scheme. The numerical analysis is validated by comparing with a closed form analytical solution. The simulation results represent the particle size distribution as a function of time and position. The method allows prediction of the effects of the initial conditions and physical properties of the suspension on its dynamic behavior and phase separation.  相似文献   

6.
A new averaged general dynamic equation (GDE) for nanoparticles in the turbulent flow is derived by considering the combined effect of convection, Brownian diffusion, turbulent diffusion, turbulent coagulation, and fluctuating coagulation. The equation is solved with the Taylor-series expansion moment method in a turbulent pipe flow. The experiments are performed. The numerical results of particle size distribution correlate well with the experimental data. The results show that, for a turbulent nanoparticulate flow, a fluctuating coagulation term should be included in the averaged particle GDE. The larger the Schmidt number is and the lower the Reynolds number is, the smaller the value of ratio of particle diameter at the outlet to that at the inlet is. At the outlet, the particle number concentration increases from the near-wall region to the near-center region. The larger the Schmidt number is and the higher the Reynolds number is, the larger the difference in particle number concentration between the near-wall region and near-center region is. Particle polydispersity increases from the near-center region to the near-wall region. The particles with a smaller Schmidt number and the flow with a higher Reynolds number show a higher polydispersity. The degree of particle polydispersity is higher considering fluctuating coagulation than that without considering fluctuating coagulation.  相似文献   

7.
Brownian coagulation is the most important inter-particle mechanism affecting the size distribution of aerosols. Analytical solutions to the governing population balance equation (PBE) remain a challenging issue. In this work, we develop an analytical model to solve the PBE under Brownian coagulation based on the Taylor-expansion method of moments. The proposed model has a clear advantage over conventional asymptotic models in both precision and efficiency. We first analyze the geometric standard deviation (GSD) of aerosol size distribution. The new model is then implemented to determine two analytic solutions, one with a varying GSD and the other with a constant GSD. The varying solution traces the evolution of the size distribution, whereas the constant case admits a decoupled solution for the zero and second moments. Both solutions are confirmed to have the same precision as the highly reliable numerical model, implemented by the fourth-order Runge–Kutta algorithm, and the analytic model requires significantly less computational time than the numerical approach. Our results suggest that the proposed model has great potential to replace the existing numerical model, and is thus recommended for the study of physical aerosol characteristics, especially for rapid predictions of haze formation and evolution.  相似文献   

8.
Smoluchowski kinetic equation governing the time evolution of the pair correlation function of rigid sphericalparticles suspended in a Newtonian fluid is extended to include particle migration. The extended kinetic equation takes into account three types of forces acting on the suspended particles: a direct force generated by an interparticle potential, hydrodynamic force mediated by the host fluid, and the Faxén-type forces bringing about the across-the-streamline particle migration. For suspensions subjected to externally imposed flows, the kinetic equation is solved numerically by the proper generalized decomposition method. The imposed flow investigated inthe numerical illustrations is the Poiseuille flow. Numerical solutions provide the morphology (the pair correlation function), the rheology (the stress tensor), and the particle migration.  相似文献   

9.
填隙幂率流体下两刚性圆球相对错移时的粘性阻力   总被引:1,自引:0,他引:1  
湿颗粒离散元模型以两球作用时填隙流体定常流动解为基础,其中切向作用是难点,国外仅有Goldman的牛顿流体渐近解.基于Reynolds润滑理论导出了两刚性球切向错动时填隙幂律流体的压力方程,并利用傅立叶级数展开简化,通过数值解法得到相应的压力分布、黏性阻力及阻力矩.该方程的解较之作者先前对速度场附加假定的结果精确,而当幂指数为1时等价于Goldman的牛顿流体渐近解.  相似文献   

10.
The steady laminar incompressible free convective flow of a nanofluid over a permeable upward facing horizontal plate located in porous medium taking into account the thermal convective boundary condition is studied numerically. The nanofluid model used involves the effect of Brownian motion and the thermophoresis. Using similarity transformations the continuity, the momentum, the energy, and the nanoparticle volume fraction equations are transformed into a set of coupled similarity equations, before being solved numerically, by an implicit finite difference numerical method. Our analysis reveals that for a true similarity solution, the convective heat transfer coefficient related with the hot fluid and the mass transfer velocity must be proportional to x −2/3, where x is the horizontal distance along the plate from the origin. Effects of the various parameters on the dimensionless longitudinal velocity, the temperature, the nanoparticle volume fraction, as well as on the rate of heat transfer and the rate of nanoparticle volume fraction have been presented graphically and discussed. It is found that Lewis number, the Brownian motion, and the convective heat transfer parameters increase the heat transfer rate whilst the thermophoresis decreases the heat transfer rate. It is also found that Lewis number and the convective heat transfer parameter enhance the nanoparticle volume fraction rate whilst the thermophoresis parameter decreases nanoparticle volume fraction rate. A very good agreement is found between numerical results of the present article for special case and published results. This close agreement supports the validity of our analysis and the accuracy of the numerical computations.  相似文献   

11.
In many energy and combustion applications, particles experience large temperature gradients, which can affect the coagulation process due to thermophoresis. This study presents a rigorous theory of thermophoretically modified Brownian coagulation in the entire particle size regime. The theoretical derivations are based on the kinetic theory for the free-molecular regime and the harmonic mean method for the transition regime. The coagulation kernels in different size regimes can be expressed as the basic Brownian coagulation kernel times an enhancement factor. The enhancement factor represents the coagulation rate enhancement induced by thermophoresis and is a function of specific dimensionless numbers. Based on the enhancement factor, the thermophoretic enhancement effects on particle coagulation are further analyzed under a wide range of gas and particle conditions. The results show that thermophoretic enhancement effects are ignorable in the free-molecular regime, but need to be considered in the continuum regime and the transition regime. In addition, the enhancement effects increase significantly with increase of gas temperature and temperature gradient while decrease with increase of gas pressure. The present study can improve understanding of thermophoretic effects on Brownian coagulation in the entire size regime and provide a useful tool to calculate the coagulation rates in presence of thermophoresis.  相似文献   

12.
13.
存在填隙幂律流体时圆球间切向作用的近似解   总被引:3,自引:0,他引:3  
在Reynolds润滑理论的基础上,导出了存在填隙幂律流体时,两刚性圆球有相对切向运动时流体压力的近似方程,并进一步求得了圆球所受阻力矩的近似积分表达式,给出了问题的数值解。结果发现幂流体的幂指数、颗粒间最小间隙以及颗粒的大小都是流体压力和颗粒间切向阻力的重要因素。与Godman等人的牛顿流体下圆球平行于平面缓慢运动时圆球所受阻力以及阻力矩的渐近解作的比较表明,本文的数值解优于渐近解。  相似文献   

14.
Introduction ParticulateMatter(PM10,aerodynamicdiameterlessthan10μm)hasbeenwidely investigated.Somekindsofcombustionincludingcoalcombustion,gasoline/dieseloil combustionofvehicle,municipalsolidwastecombustion,etc,areoneofthemainsourcesof PM10[1].Particle…  相似文献   

15.
We consider a random model of diffusion and coagulation. A large number of small particles is randomly scattered in at an initial time. Each particle has some integer mass and moves as a Brownian motion whose rate of diffusion is determined by that mass. When any two particles are close, they are liable to combine into a single particle that bears the mass of each of them. The range of interaction between pairs of particles is chosen so that a typical particle is liable to interact with a unit order of other particles in a unit of time. We determine the macroscopic evolution of the system, in any dimension d ≧ 3. The density of particles evolves according to the Smoluchowski system of partial differential equations, indexed by the mass parameter, in which the interaction term is a sum of products of densities. Central to the proof is the task of establishing the so-called Stosszahlansatz, which asserts that, at any given time, the presence of particles of two given masses at any given point in macroscopic space is asymptotically independent, as the initial number of particles is taken to be high. Nonetheless, there is, in a microscopic region about each particle, a reduced probability of finding another particle. Determining this deficit precisely is necessary in computing the coefficients appearing in the interaction terms of the Smoluchowski partial differential equation.  相似文献   

16.
The force of interaction between small particles in a gas induced by a temperature difference between the particle surface and the gas far away from the particle is considered. The particle dimensions correspond to the free-molecular, transitional, and continuum heat transfer regimes. A Monte-Carlo numerical method of direct statistical simulation of the solution of the nonlinear Boltzmann equation and the results of asymptotic solutions are used. The force of interaction between two hot or cold spherical particles is investigated. The dependence of the temperature force on the particle size, i.e. on the flow regime (Knudsen number), and the distance between the particles is examined. Approximations for these dependences are constructed.  相似文献   

17.
This paper describes an analytical method for solving semispatial boundary-value problems for the ellipsoidal statistical equation with a frequency proportional to the molecular velocity. The classical Smoluchowski problem of a temperature jump in a rarefied gas and weak vaporization (condensation) is solved. Numerical calculations of the obtained expressions are performed. A comparison is made with previous results.  相似文献   

18.
离散系统中的颗粒物在凝并、破碎、冷凝/蒸发、成核、沉积等事件作用下颗粒尺度分布的时间演变由通用动力学方程所描述.该方程为一典型的部分积分微分方程,普通数值方法难以求解.本文详细介绍了求解通用动力学方程的矩方法、分区法、离散法、离散-分区法、MonteCarlo方法等几种算法的原理、优缺点和最新的研究进展,并着重介绍了MonteCarlo算法,包括基于时间驱动Monte Carlo方法、基于事件驱动MonteCarlo方法、常数目法、常体积法以及多重Monte Carlo算法.   相似文献   

19.
IntroductionInordertoadjustthecontrolparametersofplaneinertialshaker,optimizetheconstructiondesignofshakerandincreaseefficiencyofsieving ,itisnecessarytoresearchthemovementregularityofsolidparticleonthedrillingfluidlineshakerscreen .Owingtothedifferent…  相似文献   

20.
The collision efficiency of dioctyl phthalate nanoparticles in Brownian coag- ulation has been studied. A set of collision equations is solved numerically to find the relationship between the collision efficiency and the particle radius varying in the range of 50 nm to 500 nm in the presence of Stokes resistance, lubrication force, van der Waals force, and elastic deformation force. The calculated results are in agreement with the experimental data qualitatively. The results show that the collision efficiency decreases with the increase of the particle radii from 50 nm to 500 nm. Based on the numerical data, a new expression for collision efficiency is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号