首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
超声纯横波法测试45#钢的内部应力   总被引:1,自引:1,他引:1  
魏勤  董师润  徐颖梅 《实验力学》2007,22(6):588-592
声各向同性的金属材料在应力作用下,材料表现出声各向异性,这是用声弹性法分析材料内部应力的基础。本文用垂直于应力方向传播的超声纯横波对45#钢进行测试,测试时横波的偏振化方向分别平行和垂直于应力方向。实验结果表明:材料在拉、压应力作用下,相互正交的两超声纯横波的声速都发生了变化,且声各向异性因子与应力成线性关系。利用此关系可测试材料内部应力,提供了一种无损测试材料内部应力的方法,另外本实验方法也可以对材料内部残余应力进行评估。实验中利用回振法测量声速,可测量声速的微小变化,精度高。  相似文献   

2.
In this paper we present a device for the practical application of an ultrasonic critical-angle refractometry (UCRfr) technique. UCRfr is a technique for measuring the velocity of longitudinal, shear and Rayleight waves, developed to improve the traditional ultrasonic methods for measuring the stress level in materials by means of acousto-elasticity. The technique consists of relating the variations in wave propagation velocity to variations in the angle of refraction at the interface with a second medium. Variations in the angle of refraction are determined on the basis of delay in receiving of the same wave at two different points. The study deals with the measurements of velocity changes of longitudinal wave due to uniaxial stress. In the present work the effects of stress on aluminum and steel specimens have been studied. Experimentation has show the potential of the technique for stress measurement; on the other hand, when the applied stress is known, it allows the measurement of the acoustoelastic constants of longitudinal waves. As regards measuring variations in velocity induced by stress, using this method it is possible, with a suitable choice of the material the device is made of, to isolate the effects of stress on velocity from the possible effects of temperature.  相似文献   

3.
The acoustoelastic stress analysis is based on the fact that an initially isotropic material becomes anisotropic under stress. The birefringent effect for polarized ultrasonic shear waves in the stressed material will then be similar to the photoelastic effect in which a light wave and a transparent model specimen are used. In this paper, the velocity differences of acoustical, perpendicularly polarized waves are measured directly by a ‘sing-around’ method using a 5-MHz shear-type transducer. The residual-stress distribution in a mild-steel circular plate with a concentrically patch-welded joint is measured by this method. The acoustoelastic coefficient is obtained separately by uniaxial testing of the base material. The results show that the acoustical stress measurement, carried out nondestructively, agrees well with those obtained by conventional destructive methods as well as with theoretical predictions.  相似文献   

4.
This paper proposes a method to evaluate surface stresses in orthotropic materials by the use of vertically polarized shear waves (SV waves). It is assumed that the normal to the surface coincides with one of the axes of anisotropy, and that the material anisotropy is not necessarily small. The speeds of the waves are expressed in terms of the material properties, the stress, the rigid body rotation and the propagation direction. From the expressions, and for the following two cases: (1) the rigid body rotation is known, (2) the anisotropy is weak, it is possible to determine the components of the surface stress by measuring the speeds of SV waves propagating in several directions. When the anisotropy is weak, the acoustoelastic birefringence for SV waves is also derived, to separate the material anisotropy and the difference of the principal stresses. The theory can be applied to stress evaluation by using ultrasonic Lamb waves whose speeds are nearly equal to those of SV waves.  相似文献   

5.
This paper completes an earlier study (Tanuma and Man, Journal of Elasticity, 85, 21–37, 2006) where we derive a first-order perturbation formula for the phase velocity of Rayleigh waves that propagate along the free surface of a macroscopically homogeneous, anisotropic, prestressed half-space. We adopt the formulation of linear elasticity with initial stress and assume that the deviation of the prestressed anisotropic medium from a suitably-chosen, comparative, unstressed and isotropic state be small. No assumption, however, is made on the material anisotropy of the incremental elasticity tensor. With the help of the Stroh formalism, here we derive first-order perturbation formulas for the changes in polarization ratio and phase shift of Rayleigh waves from their respective comparative isotropic value. Examples are given, which show that the perturbation formulas for phase velocity and polarization ratio can serve as a starting point for investigations on the possible advantages of using Rayleigh-wave polarization, as compared with using wave speed, for acoustoelastic measurement of stress.   相似文献   

6.
W. Li  Y. Cho 《Experimental Mechanics》2014,54(8):1309-1318
The use of nonlinear ultrasonic waves has been accepted as a potential technique to characterize the state of material micro-structure in solids. The typical nonlinear phenomenon is generation of second harmonics. Second harmonic generation of ultrasonic waves propagation has been vigorously studied for tracking material micro-damages in unbounded media and plate-like waveguides. However, there are few studies of launching second harmonic guided wave propagation in tube-like structures. Considering that second harmonics could provide useful information sensitive for material degradation condition, this research aims at developing a procedure for detecting second harmonics of ultrasonic guided wave in an isotropic pipe. The second harmonics generation of guided wave propagation in an isotropic and stress-free elastic pipe is investigated. Flexible polyvinylidene fluoride (PVDF) comb transducers are used to measure fundamental wave and second harmonic one. Experimental results show that nonlinear parameters increase monotonically with propagation distance. This work experimentally verifies that the second harmonics of guided waves in pipe have the cumulative effect with propagation distance. The proposed procedure is applied to assessing thermal fatigue damage indicated by nonlinearity in an aluminum pipe. The experimental observation verifies that nonlinear guided waves can be used to assess damage levels in early thermal fatigue state by correlating them with the acoustic nonlinearity.  相似文献   

7.
The ultrasonic residual stresses measurement is based on the acoustoelastic effect that refers to the change in velocity of the elastic waves when propagating in a stressed media. The experimental method using the longitudinal critically refracted (Lcr) waves requires an acoustoelastic calibration and an accuracy measurement of the time-of-flight on both stressed and unstressed media. The accuracy of this method is strongly related to that of the calibration parameters, namely the time-of-flight at free stress condition (t0) and the acoustoelastic coefficient (K). These parameters should be obtained on a free stress sample that has an identical microstructure to that of the stressed media. Our study concerns the ultrasonic evaluation of the welding residual stresses. This assembly process induces three distinct microstructures in the weld seam: the melted zone (MZ), heat affected zone (HAZ) and the parent metal (PM). Previously, the residual stresses evaluation in the steel welded plates, by the use of the Lcr wave method, was only possible in the MZ and in the PM zones. While in the HAZ, the residual stresses were incorrectly evaluated due to its small width impeding the extraction of the calibration sample. In this paper, we propose an original approach to solve this problem, which consists of reproducing the microstructure of this zone using a specific heat treatment. For the experimental part, P355 steel welded plates were used and the three zones were probed. The results compared with those obtained by the hole-drilling reference method show a proven potential of the ultrasonic method using the Lcr waves. The Lcr wave residual stresses measurements were made with sufficient accuracy, such as the variability of repeated measures was estimated on the order of ± 36 MPa.  相似文献   

8.
Two stress-acoustic coefficients,K 1 andK 2, are required to determine the state of biaxial surface stress from ultrasonic Rayleigh-wave velocity or time of flight measurements in elastic, initially isotropic solids. An experimental technique is described for the precise measurement of these two coefficients in uniaxially stressed test specimens. The technique is applied to aluminum 2024-T351 and 6061-T651 alloys. The influence on measurement results of various parameters such as material anisotropy and temperature is considered.  相似文献   

9.
Manipulating acoustic wave propagation through a material have several interdisciplinary applications. Here we predict shift in energy flux deviation for acoustic waves propagating in unidirectional graphite/epoxy due to applied normal and shear stresses using both an analytical model, using acoustoelastic continuum theory, and a finite element discrete numerical model. The acoustoelastic theory predicts that the quasi-transverse (QT) wave exhibits larger shifts in energy flux deviation compared to quasi-longitudinal (QL) or the pure transverse (PT) due to an applied shear stress for fiber orientation angle ranging from 0° to 60°. Due to an applied shear stress the QT wave exhibits a shift in energy flux deviation at 0° fiber orientation angle as compared to normal stress case where the flux deviation and its load induced shift are both zero. A finite element model (FEM) is developed where equations of motion include the effect of nonlinear elastic coefficients. Element equations were integrated in time using Newmark’s method to determine the shift in energy flux deviations in graphite/epoxy for different loading cases. The energy flux shift of QT waves predicted by FEM for fiber orientation angles from 0° to 60° for applied shear stress case is in excellent agreement with acoustoelastic theory. Because energy shift magnitudes are not small, it is possible to experimentally measure these shifts and calibrate shifts with respect to load type (normal/shear) and magnitude.  相似文献   

10.
声弹性方法测量金属材料的塑性损伤   总被引:3,自引:0,他引:3  
廖财楚  吴克成 《实验力学》1997,12(3):364-369
本文提出一个利用非线性参数研究材料损伤的声弹性方法.在该方法中定义了一个由二阶和三阶弹性常数所组合的损伤变量.以20#钢为例,采用横波声弹性方法测量金属材料的塑性损伤.同时用声速法作了损伤测量.对比两种方法的实验结果表明,新方法是对金属材料塑性损伤测量的有效技术.  相似文献   

11.
Based on the nonlinear theory of acoustoelasticity, considering the triaxial terrestrial stress, the fluid static pressure in the borehole and the fluid nonlinear effect jointly, the dispersion curves of the monopole Stoneley wave and dipole flexural wave propagating along the borehole axis in a homogeneous isotropic formation are investigated by using the perturbation method. The relation of the sensitivity coefficient and the velocity-stress coefficient to frequency are also analyzed. The results show that variations of the phase velocity dispersion curve are mainly affected by three sensitivity coefficients related to third-order elastic constant. The borehole stress concentration causes a split of the flexural waves and an intersection of the dispersion curves of the flexural waves polarized in directions parallel and normal to the uniaxial horizontal stress direction. The stress-induced formation anisotropy is only dependent on the horizontal deviatoric terrestrial stress and independent of the horizontal mean terrestrial stress, the superimposed stress and the fluid static pressure. The horizontal terrestrial stress ratio ranging from 0 to 1 reduces the stress-induced formation anisotropy. This makes the intersection of flexural wave dispersion curves not distinguishable. The effect of the fluid nonlinearity on the dispersion curve of the mode wave is small and can be ignored.The project supported by the National Natural Science Foundation of China (10272004) and The Special Science Foundation of the Doctoral Discipline of the Ministry of Education of China(20050001016) The English text was polished by Keren Wang.  相似文献   

12.
A non-contact measuring technique of ultrasonic waves velocity is proposed, in which Rayleigh waves are detected by a laser Doppler velocimeter and the velocity is measured precisely by means of a sing-around unit and a digital oscilloscope. With the proposed technique, the acoustoelastic coefficient of Rayleigh waves in mild steel SS41 is obtained, which is in good agreement with that obtained by the contact method. Furthermore the non-contact technique is applied to evaluate the residual stress in a butt-welded steel plate, the result is reasonable.  相似文献   

13.
In this paper, the propagation of Rayleigh waves in orthotropic non-viscous fluid-saturated porous half-spaces with sealed surface-pores and with impervious surface is investigated. The main aim of the investigation is to derive explicit secular equations and based on them to examine the effect of the material parameters and the boundary conditions on the propagation of Rayleigh waves. By employing the method of polarization vector the explicit secular equations have been derived. These equations recover the ones corresponding to Rayleigh waves propagating in purely elastic half-spaces. It is shown from numerical examples that the Rayleigh wave velocity depends strongly on the porosity, the elastic constants, the anisotropy, the boundary conditions and it differs considerably from the one corresponding to purely elastic half-spaces. Remarkably, in the fluid saturated porous half-spaces, Rayleigh waves may travel with a larger velocity than that of the shear wave, a fact that is impossible for the purely elastic half-spaces.  相似文献   

14.
Summary A spherical domain within an anisotropic crystalline material is considered to have elastic constants differing from those of the remainder of the material; the particular case where the constants vanish within the sphere represents a cavity. The elastic fields inside and immediately outside the spherical domain, together with the interaction energy, are calculated for the case of a uniform stress applied at infinity. Specific examples are given for aluminum, copper, and pyrite, and numerical results are compared with those for isotropic material. The tensile stress concentration is larger for aluminum than for isotropic material while the opposite is true for pyrite. Similarly, the interaction energy of the inhomogeneity is larger for an anisotropic material than an isotropic material, but in pyrite the reverse is found.  相似文献   

15.
航空有机玻璃高阶弹性常数超声测定   总被引:2,自引:0,他引:2  
从有限变形弹性动力学理论出发,认为超声在经历初始静态形变的各向同性弹性体中的传播是叠加在有限变形上的微小扰动,假设应变是应力的三次函数,导出以材料高阶弹性柔度系数为参数的超声纵波传播速度与初始应力关系式,针对YB-3航空有机玻璃试件,通过一组应力-速度测量数据,利用非线性最小二乘法优化方法确定了该材料的前四阶弹性柔度系数,并对实验及模拟计算结果进行了讨论。  相似文献   

16.
This paper derives an exact solution for the non-uniform stress and displacement fields within a finite, transversely isotropic, and linear elastic cylinder under compression with a kind of radial constraint induced by friction between the end surfaces of the cylinder and the loading platens. The main feature of the present work is the introduction of a general solution form for Lekhnitskii’s stress function such that the governing equation and all end and curved boundary conditions of the cylinder are satisfied exactly. Two different solutions were obtained corresponding to the real or complex characteristic roots of the governing equation, depending on the combination of the elastic material constants. The solution by Watanabe [Watanabe, S., 1996. Elastic analysis of axi-symmetric finite cylinder constrained radial displacement on the loading end. Structural Engineering/Earthquake Engineering JSCE 13, 175s–185s] for isotropic cylinders under compression test can be recovered as a special case. Our numerical results show that both the non-uniform stress distribution and the difference between the apparent and the true Young’s moduli of the cylinder are very sensitive to the anisotropy of Young’s moduli, Poisson’s ratios and shear moduli. A more distinct bulging shape of the cylinder is expected when anisotropy in shear modulus is strong, the cylinder is relatively short, and the end constraint is large. The bulging shape, however, does not depend strongly on anisotropy of either Poisson’s ratio or Young’s modulus.  相似文献   

17.
The complete orthotropic elastic-stiffness matrix of unidirectional, Borsic-filament-reinforced aluminum composites was experimentally evaluated for three different volume fractions by ultrasonic velocity measurements on thin plates. Longitudinal- and shear-velocity measurements were made in appropriate symmetry directions by direct contact or liquid-immersion techniques. The elastic constants determined by this pulsed through-transmission method were in agreement with micromechanical theories based on the properties of the constituent materials. Agreement was also found between engineering constants determined by mechanical testing and those calculated from the ultrasonic data. Finally, measurement of the ultrasonic-wave velocity has also been shown to be a rapid nondestructive-test method for determining filament-volume fraction in a fabricated part.  相似文献   

18.
Herein we consider Rayleigh waves propagating along the free surface of a macroscopically homogeneous, anisotropic, prestressed half-space. We adopt the formulation of linear elasticity with initial stress and assume that the deviation of the prestressed anisotropic medium from a comparative ‘unperturbed’, unstressed and isotropic state, as formally caused by the initial stress and by the anisotropic part of the incremental elasticity tensor, be small. No assumption, however, is made on the material anisotropy of the incremental elasticity tensor. With the help of the Stroh formalism, we derive a first-order perturbation formula for the shift of phase velocity of Rayleigh waves from its comparative isotropic value. Our perturbation formula does not agree totally with that which was derived some years ago by Delsanto and Clark, and we provide another argument as further support for our version of the formula. According to our first-order formula, the anisotropy-induced velocity shifts of Rayleigh waves, taken in totality of all propagation directions on the free surface, carry information only on 13 elastic constants of the anisotropic part of the incremental elasticity tensor. The remaining eight elastic constants are those which would become zero if were monoclinic with the two-fold symmetry axis normal to the free surface of the material half-space in question.  相似文献   

19.
This paper investigates the potential of ultrasonic non-destructive measurements of residual stresses using the modal frequency spacing method based on the interference spectrum of leaky Lamb waves as an alternative to the commonly used flight-time approach in ultrasonic methods. Extensive experiments were carried out to verify the viability and robustness of the technique using an instrumented leaky Lamb wave setup with uniaxial stressed samples and welded steel samples. To improve the signal-to-noise ratio, multiple sets of raw signals of specularly reflected and leaky Lamb waves were acquired and then averaged in the time domain. The acquired data in the time domain were then transformed into the frequency domain to form the interference spectrum of leaky Lamb waves with a good repeatability. The acoustoelastic coefficient of carbon steel is then derived from the measured relationship of wave velocity and applied stress. Finally, a welded steel plate was examined and residual stress was evaluated. The current work demonstrates the feasibility and the potential of the proposed method in measuring residual stresses in welded plates and thin-walled structures.  相似文献   

20.
Dispersion of Stoneley waves is studied in a sedimentary layer of ocean bottom resting over basaltic solid half space. Sedimentary layer is assumed a transversely isotropic poroelastic medium. Lower-most solid half-space is assumed to be embedded with vertically aligned saturated micro-cracks and behaves transversely isotropic to wave propagation.Frequency equation is obtained in the form of determinantal equation. Role of phase angle is eliminated by expressing slowness of waves in terms of phase velocity and elastic constants. Numerical solutions for phase velocity and group velocity are obtained for a particular model. Calculations are made for different depths of ocean and sediments. Effect of thickness and density of cracks on these velocities are observed.Special cases are discussed which represent the absence of ocean and sediments, in the model considered. Changes in dispersion are discussed during the stress accumulation in an earthquake preparation region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号