首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
低渗透裂缝性油气藏非稳态窜流因子研究   总被引:1,自引:0,他引:1  
深入分析了常定窜流因子和现有的非稳态因子对于低渗透基质-裂缝窜流的不适应问题,根据对23 个低渗岩心渗流曲线的拟合分析结果,引入了变渗透率系数,并在此基础上推导了非线性扩散方程,也就是低渗透基质-裂缝系统间窜流的控制微分方程;经过无量纲化处理,引入了动边界条件,分别利用积分方法和矩方法导出了非线性扩散方程在前后两个阶段的近似解析解,并在此基础上构建了非稳态窜流因子的表达形式;新的窜流因子可以有效应用于低渗透基质-裂缝系统间的窜流计算,有限元数值模拟的结果验证了新因子在计算非线性非稳态窜流方面的准确性与可靠性.   相似文献   

2.
大型转子-基础-地基系统的非线性动力分析   总被引:1,自引:0,他引:1  
针对实际工程中的大型机组,在线性理论分析基础上,引入转子系统的非线性油膜力项,采用子结构模态综合法,形成一个比较接近实际大型汽轮发电机组的包括陀螺转子-非稳态非线性油膜转承-弹性基础-地基系统的非线性系统计算模型。通过对系统方程进行分块直接积分求解,得到了不同位置的轴承在不同转速和不同转子偏心量下引起的系统非线性动力学现象,为大机组的非线性分析和改进提供较完善的理论分析和计算的基础。  相似文献   

3.
不仅考虑低渗透油藏具有启动压力梯度的渗流特征,还考虑应力敏感地层中介质的变形;发展了Cinco-Ley H.提出的有限导流垂直裂缝井双线性流理论,将流体在垂直裂缝与地层中形成的流动划分为两个区域—垂直裂缝中的线性流区域和变形三重介质低渗透油藏中的非线性流区域;由此建立了变形三重介质低渗透油藏有限导流垂直裂缝井的非线性流...  相似文献   

4.
饱和砂土中泥浆渗透的变形-渗流-扩散耦合计算模型   总被引:1,自引:0,他引:1  
吴迪  周顺华  李尧臣 《力学学报》2015,47(6):1026-1036
传统的泥浆渗透计算中没有考虑土体变形和浆液流速的影响.根据泥浆颗粒的质量守恒定律推导了耦合流速的浓度扩散方程,并通过在浓度方程中引入沉积系数进一步计算得到沉积颗粒的质量;同时,以沉积量作为耦合项对毕奥固结方程中的水量连续方程进行了修正,在此基础上建立了变形-渗流-扩散耦合的控制方程及其变分原理. 采用有限单元法求解基本方程,运用了时间增量法与直接迭代法,并利用一维试验验证计算方法的可靠性,并与赫齐格的经典模型的计算结果进行了比较,结果表明,本文建立的模型的计算结果可以较好地预测各组试验中颗粒的沉积规律,且吻合程度优于仅考虑颗粒对流和扩散的传统计算方法. 最后,将泥浆在槽壁中的渗透简化为二维问题并进行了计算,计算结果与工程认识相符合,泥浆的沉积填充效应随深度的增加而增大,施工时需要严格控制浅层作业段的机械垂直度;成槽机的下斗抓挖时机可以根据地层填充的致密程度进行计算,对现场施工具有一定的指导意义.   相似文献   

5.
针对控制系统中由于测量延迟现象导致的不能直接进行状态估计问题,提出在测量方程中引入一不确定因子γ以表明系统存在测量延迟,且由γ的概率来表示系统的延迟量。同时根据U卡尔曼滤波原理,给出带有测量延迟的非线性系统的状态估计计算方法(称其为测量延迟U卡尔曼滤波算法),并将此方法应用到实际非线性测量光电跟踪系统中,与稳态卡尔曼估值器进行性能对比。仿真实验结果证明,在测量方程中引入一不确定因子γ以表明系统存在测量延迟是有效可行的,而且其性能优于卡尔曼估值器。  相似文献   

6.
针对用增量法求解非线性方程解的漂移问题,在非线性问题边界元法计算中建立了自我校正方法,对在拖带坐标上建立的增量形式的基本方程,引入Langrange校正因子,以全量形式的基本方程作为其辅助方程,在此基础上导出含校正项的边界积分方程,边界元自我校正方法的建立有效地保证了在非线性问题的计算中最终收敛在其解附近,提高了计算精度和运算效率。  相似文献   

7.
页岩气藏压裂水平井试井分析   总被引:5,自引:2,他引:3  
朱光普  姚军  樊冬艳  曾慧 《力学学报》2015,47(6):945-954
页岩气藏资源丰富,开发潜力巨大,已成为目前研究的热点.与常规气藏相比,页岩气藏运移机制复杂,流动模式呈非线性,有必要考虑页岩气的吸附解吸,天然微裂缝的应力敏感性,人工裂缝内的非达西流等非线性因素对压裂水平井压力响应的影响. 基于双重介质和离散裂缝混合模型,分别采用Langmuir等温吸附方程描述吸附解吸,渗透率指数模型描述应力敏感,Forchheimer方程描述非达西效应,建立页岩气藏压裂水平井数值试井模型. 运用伽辽金有限元法对模型进行求解.根据试井特征曲线,划分流动阶段,着重分析非线性因素对压力响应的影响.结果表明:页岩气藏压裂水平井存在压裂裂缝线性流、压裂裂缝径向流、地层线性流、系统径向流及封闭边界影响5 种流动阶段.吸附解吸的影响发生窜流之后,Langmuir吸附体积增大,拟压力导数曲线凹槽更加明显,系统径向流出现时间与压力波传播到边界时间均延迟;天然裂缝系统的应力敏感性主要影响试井曲线的晚期段,拟压力和拟压力导数曲线均表现为上翘,应力敏感效应越强,上翘幅度越大;高速非达西效应对早期段影响较大,非达西效应越强,拟压力降幅度越大,试井曲线上翘.与解析解的对比以及矿场实例验证了模型的正确性与适用性.   相似文献   

8.
为了降低求解局部非线性结构稳态响应的计算量,基于子结构和阻抗缩聚提出了一种用于求解局部非线性结构稳态响应的计算方法.将局部非线性结构分解为线性子结构和非线性子结构,利用谐波平衡构造各个子结构的阻抗方程,对线性子结构进行缩聚,将局部非线性动力学方程转化为求解一组非线性代数方程组问题,通过迭代求解非线性代数方程组,求解系统的稳态响应.  相似文献   

9.
两套节点格林元嵌入式离散裂缝模型数值模拟方法   总被引:1,自引:1,他引:0  
程林松  杜旭林  饶翔  曹仁义  贾品 《力学学报》2022,54(10):2892-2903
对于原始嵌入式离散裂缝模型(EDFM), 在计算包含裂缝单元的基质网格内的压力分布时采用了线性分布假设, 这导致了油藏开发早期对非稳态窜流量的计算精度不足. 因此, 本文提出了一种两套节点格林元法的EDFM数值模拟方法. 两套节点格林元法的核心思想是将压力节点与流量节点区分开, 一套压力节点设置在单元顶点, 另一套流量节点设置在网格边的中点, 满足局部物质守恒、具有二阶精度的同时, 可适用于任意网格类型. 本文将两套节点格林元法与EDFM耦合, 采用了非稳态渗流控制方程的边界积分形式推导了基质网格与裂缝网格之间传质量的新格式, 代替了线性分布假设以提高模拟精度; 此外, 修正后的EDFM能适应任意形态的基质网格剖分, 拓展了原始EDFM仅适用于矩形基质网格、难以考虑复杂油藏边界的局限性. 研究表明: 通过对比商业模拟软件tNavigator? LGR模块与原始EDFM, 验证了本文模型具有较高的早期计算精度; 以复杂油藏边界?缝网?SRV分区模型为例, 通过对比SFEM-COMSOL商业模拟软件, 验证了本文模型处理复杂问题的适应性. 本文研究可用于裂缝性油藏开发动态的精确模拟.   相似文献   

10.
针对载流导线的非线性振动问题,在以往只考虑安培力的载流导线振动方程中引入了气动荷载。在此基础上进一步引入了受迫激励荷载,以研究动态风或相邻档导线对载流覆冰导线非线性振动特征的影响,建立了一种新的气动力-安倍力-受迫激励联合作用下的载流覆冰导线系统。推导出非线性振动方程,利用Galerkin方法将该振动方程转变为有限维度的常微分方程,采用多尺度法求解得到系统的非线性受迫主共振和亚谐波共振的幅-频响应函数。通过数值计算,分析了参数变化对系统受迫共振响应的影响以及受迫主共振定常解的稳定性。结果表明,考虑气动力的振动幅值和系统非线性较未考虑气动力时更小和更弱;线路参数的变化对导线的响应幅值和系统的非线性都有一定程度的影响;主共振和亚谐波共振的响应幅值随着激励幅值的增大而增大,共振峰值向着调谐参数σ的负值方向偏移,呈现出软弹簧特征并伴随着多值和跳跃现象;主共振时,随着调谐参数的变化,响应幅值则出现同步和失步现象。  相似文献   

11.
Based on Fick’s law in matrix and Darcy flow in cleats and hydraulic fractures, a new semi-analytical model considering the effects of boundary conditions was presented to investigate pressure transient behavior for asymmetrically fractured wells in coal reservoirs. The new model is more accurate than previous model proposed by Anbarci and Ertekin, SPE annual technical conference and exhibition, New Orleans, 27–30 Sept 1998 because new model is expressed in the form of integral expressions and is validated well through numerical simulation. (1) In this paper, the effects of parameters including fracture conductivity, coal reservoir porosity and permeability, fracture asymmetry factor, sorption time constant, fracture half-length, and coalbed methane (CBM) viscosity on bottomhole pressure behavior were discussed in detail. (2) Type curves were established to analyze both transient pressure behavior and flow characteristics in CBM reservoir. According to the characteristics of dimensionless pseudo pressure derivative curves, the process of the flow for fractured CBM wells was divided into six sub-stages. (3) This paper showed the comparison of transient steady state and pseudo steady state models. (4) The effects of parameters including transfer coefficient, wellbore storage coefficient, storage coefficient of cleat, fracture conductivity, fracture asymmetry factor, and rate coefficient on the shape of type curves were also discussed in detail, indicating that it is necessary to keep a bigger fracture conductivity and fracture symmetry for enhancing well production and reducing pressure depletion during the hydraulic fracturing design.  相似文献   

12.
The matrix-fracture transfer shape factor is one of the important parameters in modeling naturally fractured reservoirs. Four decades after Warren and Root (1963, SPEJ, 245–255.) introduced the double porosity concept and suggested a relation for it, this parameter is still not completely understood. Even for a single-phase flow problem, investigators report different shape factors. This study shows that for a single-phase flow in a particular matrix block, the shape factor that Warren and Root defined is not unique and depends on the pressure in the fracture and how it changes with time. We use the Laplace domain analytical solutions of the diffusivity equation for different geometries and different boundary conditions to show that the shape factor depends on the fracture pressure change with time. In particular, by imposing a constant fracture pressure as it is typically done, one obtains the shape factor that Lim and Aziz (1995, J. Petrolean Sci. Eng. 13, 169.) calculated. However, other shape factors, similar to those reported in other studies are obtained, when other boundary conditions are chosen. Although, the time variability of the boundary conditions can be accounted for by the Duhamel’s theorem, in practice using large time-steps in numerical simulations can potentially introduce large errors in simulation results. However, numerical simulation models make use of a stepwise approximation of this theorem. It is shown in this paper that this approximation could lead to large errors in matrix-fracture transfer rate if large time-steps are chosen.  相似文献   

13.
Matrix–fracture transfer functions are the backbone of any dual-porosity or dual-permeability formulation. The chief feature within them is the accurate definition of shape factors. To date, there is no completely accepted formulation of a matrix–fracture transfer function. Many formulations of shape factors for instantly-filled fractures with uniform pressure distribution have been presented and used; however, they differ by up to five times in magnitude. Based on a recently presented transfer function, time-dependent shape factors for water imbibing from fracture to matrix under pressure driven flow are proposed. Also new matrix–fracture transfer pressure-based shape factors for instantly-filled fractures with non-uniform pressure distribution are presented in this article. These are the boundary conditions for a case for porous media with clusters of parallel and disconnected fractures, for instance. These new pressure-based shape factors were obtained by solving the pressure diffusivity equation for a single phase using non-uniform boundary conditions. This leads to time-dependent shape factors because of the transient part of the solution for pressure. However, approximating the solution with an exponential function, one obtains constant shape factors that can be easily implemented in current dual-porosity reservoir simulators. The approximate shape factors provide good results for systems where the transient behavior of pressure is short (a case commonly encountered in fractured reservoirs).  相似文献   

14.
Most of the developed models for fractured reservoirs assume ideal matrix block size distribution. This assumption may not be valid in reality for naturally fractured reservoirs and possibly lead to errors in prediction of production from the naturally fractured reservoirs especially during a transient period or early time production from the matrix blocks. In this study, we investigate the effect of variable block size distribution on one- dimensional flow of compressible fluids in fractured reservoirs. The effect of different matrix block size distributions on the single phase matrix-fracture transfer is studied using a recently developed semi-analytical approach. The proposed model is able to simulate fluid exchange between matrix and fracture for continuous or discrete block size distributions using probability density functions or structural information of a fractured formation. The presented semi-analytical model demonstrates a good accuracy compared to the numerical results. There have been recent attempts to consider the effect of variable block size distribution in naturally fractured reservoir modeling for slightly compressible fluids with a constant viscosity and compressibility. The main objective of this study is to consider the effect of variable block size distribution on a one-dimensional matrix-fracture transfer function for single-phase flow of a compressible fluid in fractured porous media. In the proposed semi-analytical model, the pressure variability of viscosity and isothermal compressibility is considered by solving the nonlinear partial differential equation of compressible fluid flow in the fractured media. The closed form solution provided can be applied to flow of compressible fluids with variable matrix block size distribution in naturally fractured gas reservoirs.  相似文献   

15.
In dual porosity modeling of naturally fractured reservoirs, fluids exchange between the high porous matrix blocks and high permeable fracture systems is governed by transfer function. Therefore, transfer function, and specially shape factor as the main part of it, control fluids flow behavior, which certainly have significant effects on development and management plan of naturally fractured reservoirs. Also several formulations have been proposed for shape factor by a number of researchers, nearly all of them derived for expansion mechanism. But, shape factor is a phase sensitive parameter that can greatly affect results of simulation. Moreover, several shortcomings are inherent in the derived expressions of shape factor for imbibition process. The main aim of this work is to develop a new time-dependent matrix–fracture shape factor specific to countercurrent imbibition. In this study, fluid saturation distribution within a matrix block is analytically derived by solving capillary–diffusion equation under different imposed boundary conditions for the process where countercurrent imbibition is the dominant oil drive mechanism. The validity of the solutions is checked against literature experimental data (Bourbiaux and Kalaydjian, SPERE 5, 361–368, SPE 18283, 1990) and also by performing single porosity fine grid simulations. Then, the concept of analogy between the transport phenomena is employed to propose a new expression for matrix–fracture transfer function that is used to derive transient shape factor. It is illustrated in this article that time variation of imbibtion rate and shape factor can be used to diagnose different states of imbibition process. Although, the displacement process and employed approaches are completely different in this and other studies (Chang, Technical report, 1993; Kazemi and Gilman (eds.) Flow and contaminant transport in fractured rock. Academic Press, San Dieg, 1993; Zimmerman et al., Water Resour Res, 29, 2127–2137, 1993; Lim and Aziz, J Pet Sci Eng 13, 169–178, 1995), but we arrived at the consistent values of shape factor under limiting condition of pseudo steady state flow. This means that after establishment of pseudo steady state, shape factor is only controlled by matrix geometry regardless of the displacement process, i.e., expansion or imbibition mechanism, However, shape factor is completely phase sensitive and process dependent during unsteady and late-transient states. Finally, boundary condition dependency of shape factor is investigated.  相似文献   

16.
One of the widely used methods for modeling matrix–fracture fluid exchange in naturally fractured reservoirs is dual porosity approach. In this type of modeling, matrix blocks are regarded as sources/sinks in the fracture network medium. The rate of fluid transfer from matrix blocks into fracture medium may be modeled using shape factor concept (Warren and Root, SPEJ 3:245–255, 1963); or the rate–time solution is directly derived for the specific matrix geometry (de Swaan, SPEJ 16:117–122, 1976). Numerous works have been conducted to study matrix–fracture fluid exchange for slightly compressible fluids (e.g. oil). However, little attention has been taken to systems containing gas (compressible fluid). The objective of this work is to develop explicit rate–time solutions for matrix–fracture fluid transfer in systems containing single phase gas. For this purpose, the governing equation describing flow of gas from matrix block into fracture system is linearized using pseudopressure and pseudotime functions. Then, the governing equation is solved under specific boundary conditions to obtain an implicit relation between rate and time. Since rate calculations using such an implicit relation need iterations, which may be computationally inconvenient, an explicit rate–time relation is developed with the aid of material balance equation and several specific assumptions. Also, expressions are derived for average pseudopressure in matrix block. Furthermore, simplified solutions (originated from the complex general solutions) are introduced applicable in infinite and finite acting flow periods in matrix. Based on the derived solutions, expressions are developed for shape factor. An important observation is that the shape factor for gas systems is the same as that of oil bearing matrix blocks. Subsequently, a multiplier is introduced which relates rate to matrix pressure instead of matrix pseudopressure. Finally, the introduced equations are verified using a numerical simulator.  相似文献   

17.
Desorption of gas from coal matrix alters the pore volume of fracture network. Consequently, cleat porosity and permeability of reservoir changes as pressure depletes. The method of standard pressure analysis calculations produces incorrect results in the case of coalbed methane reservoirs producing under dominant matrix shrinkage effect. The change in cleat porosity and permeability due to shrinkage of coal matrix following gas desorption with pressure depletion invalidates the underlying assumptions made in the derivation of diffusivity equation. Consequently, equations of pseudo-steady state commonly used in conventional reservoirs no longer remain valid as the porosity and permeability values change with pressure depletion. In this paper, effort has been made to describe pseudo-steady-state flow in coalbed methane reservoirs in the form of a new equation that accounts for pressure dependency of cleat porosity and permeability due to shrinkage of coal matrix. The concept of Al-Hussainy et al. (1966) has been extended to define a new pseudo-pressure function which assimilates within itself the pressure dependence of porosity and permeability Palmer and Mansoori (1998). Equation has been used to relate the cleat porosity with pressure. The equation-based computational method suggested in this paper finds its usefulness in estimating average reservoir pressure for any known flowing bottom hole pressure and thus reducing the frequency of future pressure buildup tests. The new equation is also useful in predicting reservoir pressure under the situation when coal matrix shrinks below desorption pressure. The equation used in the computational method has been validated with the help of numerical simulator CMG-GEM.  相似文献   

18.
Flow modeling in fractured reservoirs is largely confined to the so-called sugar cube model. Here, however, we consider vertically fractured reservoirs, i.e., the situation that the reservoir geometry can be approximated by fractures enclosed columns running from the base rock to the cap rock (aggregated columns). This article deals with the application of the homogenization method to derive an upscaled equation for fractured reservoirs with aggregated columns. It turns out that vertical flow in the columns plays an important role, whereas it can be usually disregarded in the sugar cube model. The vertical flow is caused by coupling of the matrix and fracture pressure along the vertical faces of the columns. We formulate a fully implicit three-dimensional upscaled numerical model. Furthermore, we develop a computationally efficient numerical approach. As found previously for the sugar cube model, the Peclet number, i.e., the ratio between the capillary diffusion time in the matrix and the residence time of the fluids in the fracture, plays an important role. The gravity number plays a secondary role. For low Peclet numbers, the results are sensitive to gravity, but relatively insensitive to the water injection rate, lateral matrix column size, and reservoir geometry, i.e., sugar cube versus aggregated column. At a low Peclet number and sufficiently low gravity number, the effective permeability model gives good results, which agree with the solution of the aggregated column model. However, ECLIPSE simulations (Barenblatt or Warren and Root (BWR) approach) show deviations at low Peclet numbers, but show good agreement at intermediate Peclet numbers. At high Peclet numbers, the results are relatively insensitive to gravity, but sensitive to the other conditions mentioned above. The ECLIPSE simulations and the effective permeability model show large deviations from the aggregated column model at high Peclet numbers. We conclude that at low Peclet numbers, it is advantageous to increase the water injection rate to improve the net present value. However, at high Peclet numbers, increasing the flow rate may lead to uneconomical water cuts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号