首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 276 毫秒
1.
The formation of a thin film by (i) the slow penetration of a gas bubble into a liquid filled tube, (ii) the withdrawal of a planar substrate from a liquid filled gap, is investigated theoretically for the cases of both Newtonian and shear-thinning liquids; the latter conforming to either a power–law or Ellis model. Formulated as a boundary value problem underpinned by lubrication theory, the analysis gives rise to a system of ordinary differential equations which are solved numerically subject to appropriate boundary conditions. For Newtonian liquids comparison of the predicted residual film thickness for a wide range of capillary number, Ca  (10−4, 10), is made with others obtained using existing expressions, including the classical one of Bretherton, in the region of parameter space over which they apply. In the case of (i), prediction of the behaviour of the residual fluid fraction and gap-to-film thickness ratio, for a Newtonian liquid and one that is shear-thinning and modelled via a power–law, is found to be in particularly good agreement with experimental data for Ca < 0.2. For (ii), both shear-thinning models are utilized and contour plots of residual film thickness generated as a function of Ca and the defining parameters characteristic of each model.  相似文献   

2.
A recent technique of simultaneous particle image velocimetry (PIV) and pulsed shadow technique (PST) measurements, using only one black and white CCD camera, is successfully applied to the study of slug flow. The experimental facility and the operating principle are described. The technique is applied to study the liquid flow pattern around individual Taylor bubbles rising in an aqueous solution of glycerol with a dynamic viscosity of 113×10–3 Pa s. With this technique the optical perturbations found in PIV measurements at the bubble interface are completely solved in the nose and in annular liquid film regions as well as in the rear of the bubble for cases in which the bottom is flat. However, for Taylor bubbles with concave oblate bottoms, some optical distortions appear and are discussed. The measurements achieved a spatial resolution of 0.0022 tube diameters. The results reported show high precision and are in agreement with theoretical and experimental published data.Symbols D internal column diameter (m) - g acceleration due to gravity (m s–2) - l w wake length (m) - Q v liquid volumetric flow rate (m3 s–1) - r radial position (m) - r * radial position of the wake boundary (m) - R internal column radius (m) - U s Taylor bubble velocity (m s–1) - u z axial component of the velocity (m s–1) - u r radial component of the velocity (m s–1) - z distance from the Taylor bubble nose (m) - Z * distance from the Taylor bubble nose for which the annular liquid film stabilizes (m) Dimensionless groups Re Reynolds number ( ) - N f inverse viscosity number ( ) Greek letters liquid film thickness (m) - liquid kinematic viscosity (m2 s–1) - liquid dynamic viscosity (Pa s) - liquid density (kg m–3)  相似文献   

3.
We present a new interpretation of the fingering phenomena of the thin liquid film layer through numerical investigations. The governing partial differential equation is ht + (h2?h3)x = ??·(h3h), which arises in the context of thin liquid films driven by a thermal gradient with a counteracting gravitational force, where h = h(x, y, t) is the liquid film height. A robust and accurate finite difference method is developed for the thin liquid film equation. For the advection part (h2?h3)x, we use an implicit essentially non‐oscillatory (ENO)‐type scheme and get a good stability property. For the diffusion part ??·(h3h), we use an implicit Euler's method. The resulting nonlinear discrete system is solved by an efficient nonlinear multigrid method. Numerical experiments indicate that higher the film thickness, the faster the film front evolves. The concave front has higher film thickness than the convex front. Therefore, the concave front has higher speed than the convex front and this leads to the fingering phenomena. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
In order to evaluate characteristics of the liquid film flow and their influences on heat and mass transfer, measurements of the instantaneous film thickness using a capacitance method and observation of film breakdown are performed. Experimental results are reported in the paper. Experiments are carried out at Re = 250–10000, T in = 20–50°C and three axial positions of vertically falling liquid films for film thickness measurements. Instantaneous surface waveshapes are given by the interpretation of the test data using the cubic spline method. The correlation of the mean film thickness versus the film Reynolds number is also given by fitting the test data. It is revealed that the surface wave has nonlinear behavior. Observation of film breakdown is performed at Re = 1.40 × 103–1.75 × 104 and T in = 85–95°C. From experimental results, the correlation of the film breakdown criterion can be obtained as follows: Bd = 1.567 × 10−6 Re 1.183  相似文献   

5.
Liquid sheet and film atomization: a comparative experimental study   总被引:1,自引:0,他引:1  
Liquid atomization processes are too complex to allow a purely theoretical study. Therefore experiments are necessary to quantify droplets production. In our problem, the replacement of an original complicated flow by a simpler one, i.e. liquid metal and high gas velocity by water and low air velocity, has led to a relation for the droplet diameter, thanks to dynamical similarity and order of magnitude estimates. Observation of a liquid film disruption development by high speed photography gives some informations about the mechanism of break-up in action. Granulometric measurements by video image analysis have specified the previous dimensionless relation for the mass median diameter. Measurements concern both the film and the sheet atomization, it is shown that the control of the liquid layer thickness is of major importance to control the quality of sprays.List of symbols d droplet diameter (m) - d mm mass median droplet diameter (m) - g acceleration due to the gravity (ms–2) - H g , H l gas slit width, liquid film thickness (m) - dimensionless parameters - Q 1 = H 1 V 1 liquid flow rate (m2s–1) - Reynolds number - T time(s) - V g , V l gas and liquid velocity (m s–1) - W c channel width (m) - Weber number - g , l gas and liquid viscosity (kg m–1 s–1) - g , i gas and liquid density (kg m–3) - surface tension (kg s–2) An abridged version of this paper was presented at the 6th ICLASS (Int. Conf. on Liquid Atomization and Spray Systems), Rouen, France, 18–22 July 1994  相似文献   

6.
A new form of squeeze film system is described in which the movement of one plate towards the other is simulated by the continuous volume generation of liquid over the plate area. The liquid exudes from 1580 holes distributed uniformly over the lower plate surface. An advantage of the system is that there are no moving parts, but it is important to evaluate the device using Newtonian liquids in order to compare the load bearing capacity with that predicted by equations developed for orthodox squeeze film systems. Liquid maldistribution is shown to be a problem which may be solved in various ways, one of which is to ensure that the pressure drop through the plate is high relative to that in the squeeze film.Results obtained using Newtonian liquids make satisfactory comparison with theoretical predictions, though liquid inertia probably makes a lower contribution to load bearing than is the case for an orthodox squeeze film. Liquid maldistribution is allowed for on a theoretical basis or corrected by the use of a distributor plate placed below the perforated surface.Preliminary tests using viscoelastic solutions (based on polyacrylamide of high molecular weight) suggest that the load bearing properties of the squeeze film are significantly enhanced. A load 600 per cent greater than the theoretical load is obtained in one case, the suggestion being made that this is due to stress of viscoelastic origin.Nomenclature D Exit diameter of holes in spinnerette - F 1 to F 6 Vertical force on top plate due to flow in squeeze film, defined by (1), (8), (11), (12), (13) and (14) respectively - h Plate separation - h L Distance of distributor plate from lower surface of spinnerette (function of r) - I 0 Modified Bessel function of first kind, order 0 - I 1 Modified Bessel function of first kind, order 1 - K 0 Modified Bessel function of second kind, order 0 - L Length of hole, based on diameter D, giving same pressure drop as actual spinnerette holes - dm/dt Mass flowrate of liquid - N Total number of holes in spinnerette (1580) - p Isotropic pressure in squeeze film - P RES Isotropic pressure in reservoir behind lower plate of spinnerette - p–P RES - (dp/dr)s Pressure gradient in squeeze film - (dp/dr)L Pressure gradient in lower film below spinnerette when distributor plate is used - Q Total liquid volume flowrate - q s Volume flowrate through squeeze film at radius r - q L Volume flowrate through lower film at radius r - r radial coordinate - R radius of upper disc - - v Velocity of upper disc relative to lower one (simulated by Q/R 2 in continuous flow system) - V R Average radial liquid velocity at radius R - V S Liquid exit velocity from single hole - V r V V z Point velocity components in r, and z directions respectively - z Axial coordinate - Parameter in (8) (3ND 4/32LR 2 h 3) - Viscosity of liquid - Density of liquid - rz Shear stress  相似文献   

7.
When punctured, a uniform liquid sheet is known, since Taylor and Culick, to recess at a constant speed, balancing surface tension and inertia. For planar soap films, this steady solution holds until the initially smooth receding rim is violently destabilized, exhibiting deep indentations from which droplets are ejected. A surprising new three-dimensional mechanism explaining this destabilization and resulting wavelength has been demonstrated: because of the shear between the still outer medium and the receding liquid, the film flaps through a Kelvin–Helmholtz instability, itself inducing an acceleration perpendicular to the film, which intensifies with the flapping amplitude. To this acceleration is associated a classical Rayleigh–Taylor mechanism, promoting the rim indentations. To cite this article: H. Lhuissier, E. Villermaux, C. R. Mecanique 337 (2009).  相似文献   

8.
Commonly, capillary pressure–saturation–relative permeability (P cSK r) relationships are obtained by means of laboratory experiments carried out on soil samples that are up to 10–12 cm long. In obtaining these relationships, it is implicitly assumed that the soil sample is homogeneous. However, it is well known that even at such scales, some micro-heterogeneities may exist. These heterogeneous regions will have distinct multiphase flow properties and will affect saturation and distribution of wetting and non-wetting phases within the soil sample. This, in turn, may affect the measured two-phase flow relationships. In the present work, numerical simulations have been carried out to investigate how the variations in nature, amount, and distribution of sub-sample scale heterogeneities affect P cSK r relationships for dense non-aqueous phase liquid (DNAPL) and water flow. Fourteen combinations of sand types and heterogeneous patterns have been defined. These include binary combinations of coarse sand imbedded in fine sand and vice versa. The domains size is chosen so that it represents typical laboratory samples used in the measurements of P cSK r curves. Upscaled drainage and imbibition P cSK r relationships for various heterogeneity patterns have been obtained and compared in order to determine the relative significance of the heterogeneity patterns. Our results show that for micro-heterogeneities of the type shown here, the upscaled P cS curve mainly follows the corresponding curve for the background sand. Only irreducible water saturation (in drainage) and residual DNAPL saturation (in imbibition) are affected by the presence and intensity of heterogeneities.  相似文献   

9.
Summary An apparatus has been designed and constructed to measure the dynamic viscoelastic properties of polymer melts over the frequency range 10–2–103 Hz. The measurements made on two samples of polythene are discussed, the samples differing in their molecular weight distributions. Some fractions from these two parent polymers have also been studied. The results are compared with the modifiedRouse (3) theory for polymer melts, and with the liquid model proposed byBarlow,Erginsav andLamb (4).
Zusammenfassung Mit Hilfe einer neuentwickelten Apparatur wurden Messungen der dynamischen viskoelastischen Eigenschaften von polymeren Schmelzen im Frequenzbereich 10–2 bis 10–3 Hz durchgeführt. Die Meßergebnisse, die an zwei Polyäthylenproben unterschiedlicher Molekulargewichtsverteilung erhalten wurden, werden diskutiert. Einige Fraktionen dieser beiden Polymeren wurden auch untersucht. Es wurden schließlich die Ergebnisse mit derRouseschen Theorie über polymere Schmelzen (3) und mit dem vonBarlow, Erginsav undLamb (4) vorgeschlagenen Flüssigkeitsmodell verglichen.
  相似文献   

10.
This paper presents a study on the deformation of anisotropic fibrous porous media subjected to moistening by water in the liquid phase. The deformation of the medium is studied by applying the concept of effective stress. Given the structure of the medium, the displacement of the solid matrix is not taken into account with respect to the displacement of the liquid phase. The transport equations are derived from the model proposed by Narasimhan. The transport coefficients and the relation between the variation in apparent density and effective stress are obtained by test measurements. A numerical model has been established and applied for studying drip moistening of mineral wool samples capable or incapable of deformation.Nomenclature D mass diffusion coefficient [L2t–1] - e void fraction - g gravity acceleration [Lt–2] - J mass transfer density [ML–2t–1] - K hydraulic conductivity [Lt–1] - K s hydraulic conductivity of the solid phase [Lt–1] - K * hydraulic conductivity of the deformable porous medium [Lt–1] - P pressure of moistening liquid [ML–1 t–2] - S degree of saturation - t time [t] - V speed [Lt–1] - X horizontal coordinate [L] - Z vertical coordinate measured from the bottom of porous medium [L] - z z-coordinate [L] Greek Letters porosity - 1 total hydric potential [L] - g gas density [ML–3] - 1 liquid density [ML–3] - 0 apparent density [ML–3] - s density of the solid phase [ML–3] - density of the moist porous medium [ML–3] - external load [ML–1t–2] - effective stress [ML–1t–2] - bishop's parameter - matrix potential or capillary suction [L] Indices g gas - 1 moistening liquid - p direction perpendicular to fiber planes - s solid matrix - t direction parallel to fiber planes - v pore Exponent * movement of solid particles taken into account  相似文献   

11.
The aim of this work is to carry out an experimental investigation into the generation of airborne microparticles when millimetric droplets of aqueous solutions impact onto a liquid film. Impact experiments using 3.9 mm diameter droplets were carried out for Weber numbers between 159 and 808, with a fixed Ohnesorge number of 2 × 10−3 and film parameters S f (the ratio between the thickness of the liquid film h film and the diameter of the impacting droplet d i) between 0.3 and 1. Observed results show that the deposition/splashing threshold is independent of the parameter S f in agreement with the data in the literature. The aerosol measurement results demonstrate the production of solid particles from the evaporation of secondary microdroplets with diameters less than 30 μm formed when splash occurs. The median diameter of these microdroplets is around 20 μm, corresponding to a value of d 50/d i = 5 × 10−3. Taken together, the results show that the mass and the number of particles emitted increase as the Weber number increases. Moreover, at a Weber number of 808, the results show that the mass and number of particles emitted increases as the parameter S f decreases. In this case, the mean number of microdroplets emitted per impact is equal to 14 for S f = 1 and equal to 76 for S f = 0.3.  相似文献   

12.
High-speed tomographic PIV was used to investigate the coalescence of drops placed on a liquid/liquid interface; the coalescence of a single drop and of a drop in the presence of an adjacent drop (side-by-side drops) was investigated. The viscosity ratio between the drop and surrounding fluids was 0.14, the Ohnesorge number (Oh = μd/(ρdσD)1/2) was 0.011, and Bond numbers (Bo = (ρ d  − ρ s )gD 2/σ) were 3.1–7.5. Evolving volumetric velocity fields of the full coalescence process allowed for quantification of the velocity scales occurring over different time scales. For both single and side-by-side drops, the coalescence initiates with an off-axis film rupture and film retraction speeds an order of magnitude larger than the collapse speed of the drop fluid. This is followed by the formation and propagation of an outward surface wave along the coalescing interface with wavelength of approximately 2D. For side-by-side drops, the collapse of the first drop is asymmetric due to the presence of the second drop and associated interface deformation. Overall, tomographic PIV provides insight into the flow physics and inherent three-dimensionalities in the coalescence process that would not be achievable with flow visualization or planar PIV only.  相似文献   

13.
    
The axi-symmetric laminar boundary layers, formed on the conical surface and under the cyclone roof, have been calculated by Pohlhausen's method assuming that the tangential velocity outside boundary layers varies as r –n up to the point where boundary layers meet solid body rotating liquid column and thereafter as r—as found in experiments—where r is the distance from the axis of the cone and n is flow pattern constant. Point of interaction of the boundary layers with solid body rotating liquid column has been taken from experimental results obtained with a hydrocyclone having vortex finder diameter greater than that of apex opening. Results show that there is no possibility of separation of boundary layers from cyclone wall.  相似文献   

14.
The process of contact melting of the solid phase change material (PCM) around a hot sphere, which is driven by the temperature difference between the PCM and the sphere, is analyzed in this paper. Considering the difference of the normal angle between the sphere surface and the solid–liquid interface of the melting PCM, the fundamental equations of the melting process are derived with the film theory. The new film thickness and pressure distribution inside the liquid film and the variation law of the normal angle of the solid–liquid interface and the melting velocity of the sphere are also obtained. It is found that (1) while normal angle at sphere surface φ is within a certain value φ0, which is related to Ste number and the outside force F, it has no obvious effect on the pressure distribution inside the liquid film and the numerical results by the present model are in accordance with the analytical results in the published literature, (2) the film thickness at φ = ±90° is constringent to a certain value and not the infinity, (3) the analytical results can be employed approximately to analyze the contact melting process except for the film thickness at φ = ±90°.  相似文献   

15.
Strain energy density expressions are obtained from a field model that can qualitatively exhibit how the electrical and mechanical disturbances would affect the crack growth behavior in ferroelectric ceramics. Simplification is achieved by considering only three material constants to account for elastic, piezoelectric and dielectric effects. Cross interaction of electric field (or displacement) with mechanical stress (or strain) is identified with the piezoelectric effect; it occurs only when the pole is aligned normal to the crack. Switching of the pole axis by 90° and 180° is examined for possible connection with domain switching. Opposing crack growth behavior can be obtained when the specification of mechanical stress σ and electric field E or (σ,E) is replaced by strain ε and electric displacement D or (ε,D). Mixed conditions (σ,D) and (ε,E) are also considered. In general, crack growth is found to be larger when compared to that without the application of electric disturbances. This includes both the electric field and displacement. For the eight possible boundary conditions, crack growth retardation is identified only with (Eyy) for negative Ey and (Dyy) for positive Dy while the mechanical conditions σy or εy are not changed. Suitable combinations of the elastic, piezoelectric and dielectric material constants could also be made to suppress crack growth.  相似文献   

16.
The circular hydraulic jump exhibits behavior quite different from that commonly observed in planar jumps. Here we examine experimentally some of the causes and consequences of those differences. We suggest that surface tension plays a dominant role in establishing the shape of the circular jump for impinging jets. The importance of surface tension is a direct result of the thinness of the liquid films normally encountered in circular jump configurations. A sequence of instabilities appears in the jump's structure as the subcritical liquid film becomes thicker and surface tension effects decrease. These conclusions are corroborated by experiments on thin planar films which result in unusual jump structures, like those seen in circular jumps. In addition, we show that the standard momentum balance for the circular jump is effective only at relatively low supercritical Froude numbers or at low ratios of downstream to upstream depth. Typical values of those parameters for circular jumps are often quite large relative to the usual values for planar open-channel flows.List of Symbols d jet diameter - D fictitious downstream drag force - Fr d jet Froude number, u f / gd - Fr h supercritical film Froude number, u f d 2/8r j gh 3 - Fr s subcritical film Froude number, u f d 2/8r s gs 3 - g gravitational body force - h local thickness of liquid sheet - p hydrostatic pressure - r radius measured from jet stagnation point - r j radius at which hydraulic jump begins - r s radius at which subcritical depth equals s - R radius of curvature of jump interface - Re d Reynolds number of the jet, u f d/v. - s liquid sheet thickness after hydraulic jump - u(r,y) radial velocity distribution in liquid film - u f velocity of impinging jet - h depth average velocity for sheet of thickness h, u f d 2/8rh - y distance normal to the wall - We Weber number of jump, s pg/ Greek letters v liquid kinematic viscosity - liquid density - surface tension  相似文献   

17.
Based on the suggested atomisation theory for the swirl spray conical film, the formula for the spray angle characteristic of pressure swirl spray atomisation θ=tg-12·(1-φ) is derived from the relation of acting forces in swirl spray.The spray angle characteristics of swirl spray are worked out with various formulas and compared with actual test data. The results show that the derived formulas for spray angle in this article agree comparatively well with the results from experiments, and that the expressions are simple. They are of definite value in practice.  相似文献   

18.
An experimental study has been made of saturated boiling heat transfer for water and R113 in a narrow vertical rectangular channel (2 mm space, 20 mm wide, and 200 mm long) at atmospheric pressure, in which the vertical heated surface (10 mm long and 20 mm wide) is located on one side at a position of 150 mm from its entrance and bubbles are forcibly passed through it at a designated period from 0.33 to 1.0 sec. The experiment shows that the heat transfer coefficients are increased by the bubble passing through the heated surface for the value of thermal diffusivity,a, times period, T0, of the passing bubbles above about 6×10–9 m2 (a T 0>6×10–9 m2) while fora T 0< 6×10–9 m2, the heat transfer coefficients become independent of the period and the effectiveness of the enhancement of the heat transfer owing to the passing bubble disappears.
Die obere Grenze der Verbesserung des Wärmeübergangs beim Sieden in einem vertikalen, rechteckigen Kanal infolge von aufsteigenden Blasen
Zusammenfassung Es wurden Experimente über den Wärmeübergang beim Sättigungssieden mit Wasser und R113 in einem engen, vertikalen, rechteckigen Kanal (2 mm Abstand, 20 mm Breite und 200 mm Länge) bei Umgebungsdruck durchgeführt, wobei die vertikale, beheizte Oberfläche (10 mm lang und 20 mm breit) auf der einen Seite in einem Abstand von 150 mm vom Eintritt angeordnet ist und die Blasen zwangsweise durch den Kanal sich mit einem Periodenabstand von 0,033 bis 1,0 s bewegen. Das Experiment zeigt, daß die Wärmeübergangskoeffizienten durch das Vorbeistreichen der Blasen an der beheizten Oberfläche verbessert werden, wenn das Produkt aus Temperaturleitfähigkeit,a, mal der Periode, T0, der vorbeistreichenden Blasen größer als 6×10–9 m2 liegt, während unterhalb dieses Wertes der Wärmeübergangskoeffizient unabhängig von der Blasenperiode ist und die Effektivität der Wärmeübergangsverbesserung infolge der Blasenströmung verschwindet.

Nomenclature a thermal diffusivity of liquid - ¯h time-averaged heat transfer coefficient - q w heat flux at wall - T 0 period of passing bubble - T w(t) temperature of heated surface - T w amplitude of heated surface temperature Greek symbols thermal conductivity - thickness of liquid film  相似文献   

19.
Exact series solutions for planar creeping flows of Oldroyd-B fluids in the neighbourhood of sharp corners are presented and discussed. Both reentrant and non-reentrant sectors are considered. For reentrant sectors it is shown that more than one type of series solution can exist formally, one type exhibiting Newtonian-like asymptotic behaviour at the corner, away from walls, and another type exhibiting the same kind of asymptotics as an Upper Convected Maxwell (UCM) fluid. The solutions which are Newtonian-like away from walls are shown to develop non-integrable stress singularities at the walls when the no-slip velocity boundary condition is imposed. These mathematical solutions are therefore inadmissible from the physical viewpoint under no-slip conditions. An inadmissible solution, with stress singularities which are not everywhere integrable, is identified among the solutions of UCM-type. For a 270° reentrant sector the radial behaviour of the normal stress is everywhere r−0.613. In the viscometric region near a wall, the radial normal stress σrr behaves like (rε)−0.613, where ε is the angle made with the wall. In addition σrθ is infinite (not integrable) at the wall even when r is non-zero. Another UCM-type solution has a normal stress behaviour away from walls which is r−0.985 for 270° sector. Again, this solution has a non-integrable stress singularity and is therefore inadmissible. Finally, for non-reentrant sectors it is shown that the flow is always Newtonian-like away from walls.  相似文献   

20.
Summary The rheological behaviour of aqueous solutions of Separan AP-30 and Polyox WSR-301 in a concentration range of 10–10000 wppm is investigated by means of a cone-and-plate rheogoniometer. The relation between the shear stress and the shear rate is for lower shear rates characterized by a timet 0, which is concentration dependent. Both polymers show for 4000 s–1 < < 10000 s–1 a behaviour similar to that of a Bingham material, characterized by a dynamic viscosity 0 and an apparent yield stress 0, which also depend on the concentration. The inertial forces are measured for water and some other Newtonian liquids. An explanation is given why the theoretical model developed for these forces does not match the experimental values; the shape of the liquid surface is shear rate dependent. To obtain the first normal stress difference, we have to correct for these inertial forces, the surface tension and the buoyancy. The normal forces, measured for Separan AP-30, appear to be a linear function of the shear rate for 350 s–1 < < 3300 s–1.
Zusammenfassung Das rheologische Verhalten wäßriger Polymerlösungen von Separan AP-30 und Polyox WSR-301 wird in einem Konzentrationsgebiet von 10–10000 wppm in einem Kegel-Platte-Rheogoniometer untersucht. Der Zusammenhang zwischen Schubspannung und Schergeschwindigkeit wird für niedrige Schergeschwindigkeiten durch eine konzentrationsabhängige Zeitt 0 gekennzeichnet. Für Schergeschwindigkeiten 4000 s–1 < < 10000 s–1 zeigen beide Polymere ein genähert binghamsches Verhalten, gekennzeichnet durch eine dynamische Viskosität 0 und eine scheinbare Fließgrenze 0, welche ebenfalls konzentrationsabhängig sind. Die Trägheitskräfte werden für Wasser und einige newtonsche Öle bestimmt. Die Abweichung der experimentellen Ergebnisse vom theoretischen Modell wird durch die Abhängigkeit der Gestalt der Flüssigkeitsoberfläche von der Schergeschwindigkeit erklärt. Um die Werte der ersten Normalspannungsdifferenz zu erhalten, muß man bezüglich der Trägheitskräfte, der Oberflächenspannung und der Auftriebskräfte korrigieren. Die Normalspannungen für Separan AP-30, gemessen für 350 s–1 < < 3300 s–1, zeigen eine lineare Abhängigkeit von der Schergeschwindigkeit.

c concentration (wppm) - g acceleration of gravity (ms–2) - K force (N) - K b buoyant force (N) - K c force, acting on the cone (N) - K 0 dimensional constant def. by eq. [24] (N) - K s force, def. by eq. [22] (N) - M dimensional constant def. by eq. [24] (Ns) - P s pressure def. by eq. [17] (Nm–2) - P 0 average pressure in the liquid atr = 0 (Nm–2) - P R average pressure in the liquid atr = R (Nm–2) - r 1,r 2 radii of curved liquid surface (m) - R platen radius (m) - R w radius of wetted platen area (m) - S x standard deviation ofx - t 0 characteristic time def. by eq. [1] (s) - T temperature (°C) - V volume of the submerged part of the cone (m3) - v tangential velocity of liquid (ms–1) - x distance (m) - angle (rad) - 0 cone angle (rad) - calibration constant (Nm–3) - shear rate (s–1) - dynamic viscosity (mPa · s) - 0 viscosity def. by eq. [1] (mPa · s) - contact angle (rad) - density (kgm–3) - static surface tension (Nm–1) - shear stress (Nm–2) - 0 yield stress def. by eq. [1] (Nm–2) - c, p angular velocity (c = cone,p = plate) (s–1) With 8 figures and 3 tables  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号