首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frictional sliding on a crack with non-uniform frictional characteristics is considered. The present work continues the investigation of Gorbatikh et al. [Int. J. Solids Struct., in press] and focuses on the cyclic loading. The evolution of the sliding process in loading–reloading–unloading cycles is analyzed. We also extend the analysis to the important case when the frictional resistance changes in the process of sliding (such changes may model “degradation” of the sliding surface during sliding, as well as other physical factors, not necessarily related to the sliding itself).  相似文献   

2.
Vladimir Kobelev 《Meccanica》2006,41(6):653-660
Failure of a composite is a complex process accompanied by irreversible changes in the microstructure of the material. Microscopic mechanisms are known of the accumulation of damage and failure of the type of localized and multiple ruptures of the fibers delamination along interphase boundaries, and also mechanisms associated with fracture of fibers. In this work, we propose a mathematical model of the local mechanism of failure of a composite material randomly reinforced with a system of short fibers. We implement the Cosserat moment model of crack tip for filament material, reinforced with whiskers or in fiber- reinforced polycrystalline materials. It is assumed that the angular distribution of the fibers is isotropic and the elastic characteristics of the fibers are considerably higher than the elastic constants of the matrix. We implement the homogenization procedure for the effective Cosserat constants similarly to the effective elastic constants. The singular solution in the vicinity of the crack tip in the Cosserat moment model is found. Using this solution, we examine the bending stresses in the filaments due to effective moment stresses in the material. The constructed model describes the phenomenon of fracture of the fibers occurring during crack propagation in those composites. The following assumptions are used as the main hypotheses for the micromechanical model. The matrix contains a nucleation crack. When the load is increased the crack grows and its boundary comes into contact with the reinforcing fibers. A further increase of the stress causes bending of the fiber. When~the fiber curvature reaches a specific critical value, the fiber ruptures. If the stress at infinity is given, the fibers no longer delay the development of failure during crack propagation The degree of bending distortion of the fiber in the vicinity of the boundary of the crack is determined by the moment model of the material. The necessity to take into account the moment stresses in the failure theory of the reinforced material was stressed in [Muki and Sternberg (1965) Zeitschrift f angew Math und Phys 16:611–615; Garajeu and Soos (2003) Math Mech Solids 8(2):189–218; Ostoja-Starzewski et al (1999) Mech Res Commun 26:387–396]. The moment Cosserat stresses were accounted also for inhomogeneous biomechanical materials by Buechner and Lakes (2003) Bio Mech Model Mechanobiol 1: 295–301. We should also mention the important methodological studies [Sternberg and Muki (1967) J Solids Struct 1:69–95; Atkinson and Leppington (1977) Int J Solids Struct 13: 1103–1122] concerned with the moment stresses in homogeneous fracture mechanics.  相似文献   

3.
In recent years a discussion could be followed where the pros and cons of the applicability of the Cosserat continuum model to granular materials were debated [Bardet, J.P., Vardoulakis, I., 2001. The asymmetry of stress in granular media. Int. J. Solids Struct. 38, 353–367; Kruyt, N.P., 2003. Static and kinematics of discrete Cosserat-type granular materials. Int. J. Solids Struct. 40, 511–534; Bagi, K., 2003. Discussion on “The asymmetry of stress in granular media”. Int. J. Solids Struct. 40, 1329–1331; Bardet, J.P., Vardoulakis, I. 2003a. Reply to discussion by Dr. Katalin Bagi. Int. J. Solids Struct. 40, 1035; Kuhn, M., 2003. Discussion on “The asymmetry of stress in granular media”. Int. J. Solids Struct. 40, 1805–1807; Bardet, J.P., Vardoulakis, I., 2003b. Reply to Dr. Kuhn’s discussion. Int. J. Solids Struct. 40, 1809; Ehlers, W., Ramm, E., Diebels, S., D’Addetta, G.A., 2003. From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses. Int. J. Solids Struct. 40, 6681–6702; Chang, C.S., Kuhn, M.R., 2005. On virtual work and stress in granular media. Int. J. Solids Struct. 42, 3773–3793]. The authors follow closely this debate and try, with this paper, to provide a platform where the various viewpoints could find their position. We consider an ensemble of rigid, arbitrarily shaped grains as a set with structure. We establish a basic mathematical framework which allows to express the balance laws and the action–reaction laws for the discrete system in a “global” form, through the concepts of “part”, “granular surface”, “separately additive function” and “flux”. The independent variable in the balance laws is then the arbitrary part of the assembly rather than the single grain. A parallel framework is constructed for Cosserat continua, by applying the axiomatics established by [Noll, W., 1959. The foundation of classical mechanics in the light of recent advances in continuum mechanics. In: The axiomatic method, with special reference to Geometry and Physics, North-Holland Publishing Co., Amsterdam pp. 266–281, Gurtin, M.E., Williams, W.O., 1967. An axiomatic foundation of continuum thermodynamics. Arch. Rat. Mech. Anal. 26, 83–117, Gurtin, M.E., Martins, L.C., 1976. Cauchy’s theorem in classical physics. Arch. Rat. Mech. Anal. 60, 305–324]. The comparison between the two realisations suggests the microscopic interpretation for some features of Cosserat Mechanics, among which the asymmetry of the Cauchy-stress tensor and the couple-stress.  相似文献   

4.
In Part I [Int. J. Solids Struct., 2003], we described the implementation of the extended finite element method (X-FEM) within Dynaflow™, a standard finite element package. In our implementation, we focused on two-dimensional crack modeling in linear elasticity. For crack modeling in the X-FEM, a discontinuous function and the near-tip asymptotic functions are added to the finite element approximation using the framework of partition of unity. This permits the crack to be represented without explicitly meshing the crack surfaces and crack propagation simulations can be carried out without the need for any remeshing. In this paper, we present numerical solutions for the stress intensity factor for crack problems, and also conduct crack growth simulations with the X-FEM. Numerical examples are presented with a two-fold objective: first to show the efficacy of the X-FEM implementation in Dynaflow™; and second to demonstrate the accuracy and versatility of the method to solve challenging problems in computational failure mechanics.  相似文献   

5.
In a recent publication (Yang et al., 2009. Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials. Int. J. Solids Struct. 46 (17) 3222–3234), we developed a finite element method capable of modelling complex two-dimensional (2D) crack propagation in quasi-brittle materials considering random heterogeneous fracture properties. The present study extends the method to model three-dimensional (3D) problems. First, 3D cohesive elements are inserted into the initial mesh of solid elements to model potential crack surfaces by a specially designed, flexible and efficient algorithm and corresponding computer program. The softening constitutive laws of the cohesive elements are modelled by spatially-varying 3D Weibull random fields. Monte Carlo simulations are then carried out to obtain statistical information of structural load-carrying capacity. A concrete cube under uniaxial tension was analysed as an example. It was found that as the 2D heterogeneous model, the 3D model predicted realistic, complicated fracture processes and load-carrying capacity of little mesh-dependence. Increasing heterogeneity in terms of the variance in the tensile strength random fields resulted in lower mean and higher standard deviation of peak loads. Due to constraint effects and larger areas of unsmooth, non-planar fracture surfaces, 3D modelling resulted in higher mean and lower standard deviation of peak loads than 2D modelling.  相似文献   

6.
The polarization saturation (PS) model [Gao, H., Barnett, D.M., 1996. An invariance property of local energy release rates in a strip saturation model of piezoelectric fracture. Int. J. Fract. 79, R25–R29; Gao, H., Zhang, T.Y., Tong, P., 1997. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491–510], and the dielectric breakdown (DB) model [Zhang, T.Y., Zhao, M.H., Cao, C.F., 2005. The strip dielectric breakdown model. Int. J. Fract. 132, 311–327] explain very well some experimental observations of fracture of piezoelectric ceramics. In this paper, the nonlinear hybrid extended displacement discontinuity-fundamental solution method (NLHEDD-FSM) is presented for numerical analysis of both the PS and DB models of two-dimensional (2D) finite piezoelectric media under impermeable and semi-permeable electric boundary conditions. In this NLHEDD-FSM, the solution is expressed approximately by a linear combination of fundamental solutions of the governing equations, which includes the extended point force fundamental solutions with sources placed at chosen points outside the domain of the problem under consideration, and the extended Crouch fundamental solutions with extended displacement discontinuities placed on the crack and the electric yielding zone. The coefficients of the fundamental solutions are determined by letting the approximated solution satisfy certain conditions on the boundary of the domain, on the crack face and the electric yielding zone. The zero electric displacement intensity factor in the PS model or the zero electric field strength intensity factor in the DB model at the outer tips of the electric yielding zone is used as a supplementary condition to determine the size of the electric yielding zone. Iteration approaches are adopted in the NLHEDD-FSM. The electric yielding zone is determined, and the extended intensity factors and the local J-integral are calculated for center cracks in piezoelectric strips. The effects of finite domain size, saturation property and different electric boundary conditions, as well as different models on the electric yielding zone and the local J-integral, are studied.  相似文献   

7.
The paper addresses the problem of a semi-infinite plane crack along the interface between two isotropic half-spaces. Two methods of solution have been considered in the past: Lazarus and Leblond [1998a. Three-dimensional crack-face weight functions for the semi-infinite interface crack-I: variation of the stress intensity factors due to some small perturbation of the crack front. J. Mech. Phys. Solids 46, 489-511, 1998b. Three-dimensional crack-face weight functions for the semi-infinite interface crack-II: integrodifferential equations on the weight functions and resolution J. Mech. Phys. Solids 46, 513-536] applied the “special” method by Bueckner [1987. Weight functions and fundamental fields for the penny-shaped and the half-plane crack in three space. Int. J. Solids Struct. 23, 57-93] and found the expression of the variation of the stress intensity factors for a wavy crack without solving the complete elasticity problem; their solution is expressed in terms of the physical variables, and it involves five constants whose analytical representation was unknown; on the other hand, the “general” solution to the problem has been recently addressed by Bercial-Velez et al. [2005. High-order asymptotics and perturbation problems for 3D interfacial cracks. J. Mech. Phys. Solids 53, 1128-1162], using a Wiener-Hopf analysis and singular asymptotics near the crack front.The main goal of the present paper is to complete the solution to the problem by providing the connection between the two methods. This is done by constructing an integral representation for Lazarus-Leblond's weight functions and by deriving the closed form representations of Lazarus-Leblond's constants.  相似文献   

8.
A hybrid framework for inverse analysis of crack-tip cohesive-zone model is developed in this two-part paper to measure cohesive-zone laws of void growth in polymers by combining analytical, experimental, and numerical approaches. This paper focuses on experimental measurements of the cohesive-zone laws for two nonlinear fracture processes in glassy polymers, namely multiple crazing in crack-growth toughening of rubber-toughened high-impact polystyrene (HIPS) and crazing of steady-state crack growth in polymethylmethacrylate (PMMA) under a methanol environment. To this end, electronic speckle pattern interferometry (ESPI) is first applied to measure the crack-tip displacement fields surrounding the fracture process zones in these polymers. These fields are subsequently equilibrium smoothed and used in the extraction of the cohesive-zone laws via an analytical solution method of the inverse problem, the planar field projection method (P-FPM) [Hong, S., Kim, K.-S., 2003. Extraction of cohesive-zone laws from elastic far-fields of a cohesive crack tip: a field projection method. Journal of the Mechanics and Physics of Solids 51, 1267-1286]. Results show that the proposed framework of the P-FPM could provide a systematic way of finding the shape of the cohesive-zone laws governed by the different micro-mechanisms in the fracture processes. In HIPS, inter-particle multiple crazing develops and the craze zone broadens ahead of a crack-tip under mechanical loading. The corresponding cohesive-zone relationship of the multiple-craze zone is found to be highly convex, which indicates effectiveness of rubber particle toughening. It is also observed that the effective peak traction, 7 MPa, in the crack-tip cohesive zone of HIPS (30% rubber content) is lower than the uniaxial yield stress of 9 MPa, presumably due to stress multi-axiality effects. In contrast, in PMMA, methanol localizes the crack-tip craze, weakening the craze traction for craze-void initiation to about 9 MPa and the fibril pull-out stress to less than 6 MPa. This reduction in cohesive traction, coupled with a strongly concave traction-separation cohesive-zone relationship, signifies environmental embrittlement of PMMA. These experimentally determined cohesive-zone laws are compared with detailed numerical analyses of effective microscale-void growth ahead of a crack tip in Part II.  相似文献   

9.
A population of several spherical voids is included in a three-dimensional, small scale yielding model. Two distinct void growth mechanisms, put forth by [Int. J. Solids Struct. 39 (2002) 3581] for the case of a two-dimensional model containing cylindrical voids, are well contained in the model developed in this study for spherical voids. A material failure criterion, based on the occurrence of void coalescence in the unit cell model, is established. The critical ligament reduction ratio, which varies with stress triaxiality and initial porosity, is used to determine ligament failure between the crack tip and the nearest void. A comparison of crack initiation toughness of the model containing cylindrical voids with the model containing spherical voids reveals that the material having a sizeable fraction of spherical voids is tougher than the material having cylindrical voids. The proposed material failure determination method is then used to establish the fracture resistance curve (JR curve) of the material. For a ductile material containing a small volume fraction of microscopic voids initially, the void by void growth mechanism prevails, which results in a JR curve having steep slope. On the other hand, for a ductile material containing a large volume fraction of initial voids, the multiple voids interaction mechanism prevails, which results in a flat JR curve. Next, the effect of T-stress on fracture resistance is examined. Finally, nucleation and growth of secondary microvoids and their effects on void coalescence are briefly discussed.  相似文献   

10.
Extending the polarization saturation model [Gao et al., 1997. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491-510] and the dielectric breakdown (DB) model [Zhang et al., 2005. The strip dielectric breakdown model. Int. J. Fract. 132, 311-327] in piezoelectric materials, the Strip Electric-Magnetic Breakdown (SEMB) model is proposed for electrically and magnetically impermeable crack in a magnetoelectroelastic medium to study the effect of the nonlinear character of electric field and magnetic field on fracture of magnetoelectroelastic materials. In the SEMB model, the electric field in the strip of the electric breakdown zone ahead of the crack tip is equal to the electric breakdown strength, while the magnetic filed in the strip of the magnetic breakdown zone is equal to the magnetic breakdown strength. By using the extended Stroh formalism and the extended dislocation modeling of a crack, the Griffith crack problem under the electrically and magnetically elastic-plastic condition in a magnetoelectroelastic medium is reduced to a set of dual integral equations. The sizes of the electric breakdown zone and the magnetic breakdown zone, the extended intensity factors and the local J-integral are obtained. The effect of the combined mechanical-electric-magnetic loadings on the local J-integral is studied.  相似文献   

11.
This paper describes a new procedure for the homogenization of orthotropic 3D periodic plates. The theory of Caillerie [Caillerie, D., 1984. Thin elastic and periodic plates. Math. Method Appl. Sci., 6, 159–191.] – which leads to a homogeneous Love–Kirchhoff model – is extended in order to take into account the shear effects for thick plates. A homogenized Reissner–Mindlin plate model is proposed. Hence, the determination of the shear constants requires the resolution of an auxiliary 3D boundary value problem on the unit cell that generates the periodic plate. This homogenization procedure is then applied to periodic brickwork panels.A Love–Kirchhoff plate model for linear elastic periodic brickwork has been already proposed by Cecchi and Sab [Cecchi, A., Sab, K., 2002b. Out-of-plane model for heterogeneous periodic materials: the case of masonry. Eur. J. Mech. A-Solids 21, 249–268 ; Cecchi, A., Sab, K., 2006. Corrigendum to A comparison between a 3D discrete model and two homogenised plate models for periodic elastic brickwork [Int. J. Solids Struct., vol. 41/9–10, pp. 2259–2276], Int. J. Solids Struct., vol. 43/2, pp. 390–392.]. The identification of a Reissner–Mindlin homogenized plate model for infinitely rigid blocks connected by elastic interfaces (the mortar thin joints) has been also developed by the authors Cecchi and Sab [Cecchi A., Sab K., 2004. A comparison between a 3D discrete model and two homogenised plate models for periodic elastic brickwork. Int. J. Solids Struct. 41/9–10, 2259–2276.]. In that case, the identification between the 3D block discrete model and the 2D plate model is based on an identification at the order 1 in the rigid body displacement and at the order 0 in the rigid body rotation.In the present paper, the new identification procedure is implemented taking into account the shear effect when the blocks are deformable bodies. It is proved that the proposed procedure is consistent with the one already used by the authors for rigid blocks. Besides, an analytical approximation for the homogenized shear constants is derived. A finite elements model is then used to evaluate the exact shear homogenized constants and to compare them with the approximated one. Excellent agreement is found. Finally, a structural experimentation is carried out in the case of masonry panel under cylindrical bending conditions. Here, the full 3D finite elements heterogeneous model is compared to the corresponding 2D Reissner–Mindlin and Love–Kirchhoff plate models so as to study the discrepancy between these three models as a function of the length-to-thickness ratio (slenderness) of the panel. It is shown that the proposed Reissner–Mindlin model best fits with the finite elements model.  相似文献   

12.
Explicit expressions of the upper and lower estimates on the macroscopic elastic moduli of random trigonal polycrystals are derived and calculated for a number of aggregates, which correct our earlier results given in Pham [Pham, D.C., 2003. Asymptotic estimates on uncertainty of the elastic moduli of completely random trigonal polycrystals. Int. J. Solids Struct. 40, 4911–4924]. The estimates are expected to predict the scatter ranges for the elastic moduli of the polycrystalline materials. The concept of effective moduli is reconsidered regarding the macroscopic uncertainty of the moduli of randomly inhomogeneous materials.  相似文献   

13.
The aim of this paper is to study disclinations in the framework of a second strain gradient elasticity theory. This second strain gradient elasticity has been proposed based on the first and second gradients of the strain tensor by Lazar et al. [Lazar, M., Maugin, G.A., Aifantis, E.C., 2006. Dislocations in second strain gradient elasticity. Int. J. Solids Struct. 43, 1787–1817]. Such a theory is an extension of the first strain gradient elasticity [Lazar, M., Maugin, G.A., 2005. Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int. J. Eng. Sci. 43, 1157–1184] with triple stress. By means of the stress function method, the exact analytical solutions for stress and strain fields of straight disclinations in an infinitely extended linear isotropic medium have been found. An important result is that the force stress, double stress and triple stress produced by wedge and twist disclinations are nonsingular. Meanwhile, the corresponding elastic strain and its gradients are also nonsingular. Analytical results indicate that the second strain gradient theory has the capacity of eliminating all unphysical singularities of physical fields.  相似文献   

14.
A thermally dissipative cohesive zone model is developed for predicting the temperature increase at the tip of a crack propagating dynamically in a nominally brittle material exhibiting a cohesive-type failure such as crazing. The model assumes that fracture energy supplied to the crack tip region that is in excess of that needed for the creation of new free surfaces during crack advance is converted to heat within the cohesive zone. Bulk dissipation mechanisms, such as plasticity, are not accounted for. Several cohesive traction laws are examined, and the model is then used to make predictions of crack tip heating at various crack propagation speeds in the nominally brittle amorphous polymer PMMA, observed to fail by a crazing-type mechanism. The heating predictions are compared to experimental data where the temperature field surrounding a high speed crack in PMMA was measured. Measurements are made in real time using a multi-point high speed HgCdTe infrared radiation detector array. At the same time as temperature, simultaneous measurement of fracture energy is made by a strain gauge technique, and crack tip speed is monitored through a resistance ladder method. Material strength can be estimated through uniaxial tension tests, thus minimizing the need for parameter fitting in the stress-opening traction law. Excellent agreement between experiments and theory is found for two of the cohesive traction law temperature predictions, but only for the case where a single craze is active during the dynamic fracture of PMMA, i.e. crack tip speed up to approximately 0.2cR. For higher speed fracture where subsurface damage becomes prominent, the line dissipation model of a cohesive zone is inadequate, and a distributed damage model is needed.  相似文献   

15.
This paper summarizes our recent studies on modeling ductile fracture in structural materials using the mechanism-based concepts. We describe two numerical approaches to model the material failure process by void growth and coalescence. In the first approach, voids are considered explicitly and modeled using refined finite elements. In order to predict crack initiation and propagation, a void coalescence criterion is established by conducting a series of systematic finite element analyses of the void-containing, representative material volume (RMV) subjected to different macroscopic stress states and expressed as a function of the stress triaxiality ratio and the Lode angle. The discrete void approach provides a straightforward way for studying the effects of microstructure on fracture toughness. In the second approach, the void-containing material is considered as a homogenized continuum governed by porous plasticity models. This makes it possible to simulate large amount of crack extension because only one element is needed for a representative material volume. As an example, a numerical approach is proposed to predict ductile crack growth in thin panels of a 2024-T3 aluminum alloy, where a modified Gologanu–Leblond–Devaux model [Gologanu, M., Leblond, J.B., Devaux, J., 1993. Approximate models for ductile metals containing nonspherical voids – Case of axisymmetric prolate ellipsoidal cavities. J. Mech. Phys. Solids 41, 1723–1754; Gologanu, M., Leblond, J.B., Devaux, J., 1994. Approximate models for ductile metals containing nonspherical voids – Case of axisymmetric oblate ellipsoidal cavities. J. Eng. Mater. Tech. 116, 290–297; Gologanu, M., Leblond, J.B., Perrin, G., Devaux, J., 1995. Recent extensions of Gurson’s model for porous ductile metals. In: Suquet, P. (Ed.) Continuum Micromechanics. Springer-Verlag, pp. 61–130] is used to describe the evolution of void shape and void volume fraction and the associated material softening, and the material failure criterion is calibrated using experimental data. The calibrated computational model successfully predicts crack extension in various fracture specimens, including the compact tension specimen, middle crack tension specimens, multi-site damage specimens and the pressurized cylindrical shell specimen.  相似文献   

16.
In this note, the derivations of the higher order, 1-D (or 2-D), theories are discussed for the dynamic analysis of electroelastic (i.e., piezoelectric, piezothermoelastic and thermopiezoelectric) structural elements of uniform cross-section (or uniform thickness). Certain oversights are clarified concerning the higher order theories, including their variational formulation, invariant form and uniqueness of solutions that obscure the availability of earlier contributions in the open literature. In this respect, a higher order theory with some applications by Wu et al. most recently appeared in this journal [Int. J. Solids Struct. 39 (2002) 5325] is mentioned as one of the examples.  相似文献   

17.
A semi-infinite crack along the interface of two dissimilar half-spaces extends under in-plane loading. Each half-space belongs to a class of orthotropic or transversely isotropic elastic materials, the crack can extend at any constant speed, and all six possible relations between the four body wave speeds are considered. A steady dynamic situation is treated, and exact full displacement fields derived. A key step is a factorization that produces, despite anisotropy, simple solution forms and compact crack speed-dependent functions that exhibit the Rayleigh and Stoneley speeds as roots. These roots are calculated for various representative bimaterials.Closed-form crack opening displacement gradient and interface stress fields are also derived from a general set of coupled singular integral equations. The equation eigenvalues can, depending on crack speed, be complex/imaginary conjugates, purely real, or zero. This suggests possibilities observed in other studies: oscillations and square-root singular behavior at the crack edge, non-singular behavior, singular behavior not of square-root order, and the radiation of displacement gradient discontinuities at crack speeds beyond the purely sub-sonic range.These possibilities are explored further in terms of two important special cases in Part II of this study [Int. J. Solids Struct., 39, 1183–1198].  相似文献   

18.
19.
For any plane crack in an infinite isotropic elastic body subjected to some constant loading, Bueckner–Rice's weight function theory gives the variation of the stress intensity factors due to a small coplanar perturbation of the crack front. This variation involves the initial SIF, some geometry independent quantities and an integral extended over the front, the “fundamental kernel” of which is linked to the weight functions and thus depends on the geometry considered. The aim of this paper is to determine this fundamental kernel for the tunnel-crack. The component of this kernel linked to purely tensile loadings has been obtained by Leblond et al. [Int. J. Solids Struct. 33 (1996) 1995]; hence only shear loadings are considered here. The method consists in applying Bueckner–Rice's formula to some point-force loadings and special perturbations of the crack front which preserve the crack shape while modifying its size and orientation. This procedure yields integrodifferential equations on the components of the fundamental kernel. A Fourier transform in the direction of the crack front then yields ordinary differential equations, that are solved numerically prior to final Fourier inversion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号