首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The equation of state of finite-strain thermoelasticity is obtained using a formalized approach to constructing constitutive relations for complex media under the assumption of closeness of intermediate and current configurations. A variational formulation of the coupled thermoelastic problem is proposed. The constitutive equation, the heat-conduction equation, the relations for internal energy, free energy, and entropy, and the variational formulation of the coupled problem of finite-strain thermoelasticity are tested on the problem of uniaxial extension of a bar. The model adequately describes experimental data for elastomers, such as entropic elasticity, temperature inversion, and temperature variation during an adiabatic process. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 3, pp. 184–196, May–June, 2008.  相似文献   

2.
肖锐  向玉海  钟旦明  曲绍兴 《力学学报》2021,53(4):1028-1037
经典熵弹性模型, 如 Neo-Hookean模型和Arruda-Boyce八链模型, 被广泛应用于预测橡胶等软材料的超弹性力学行为. 然而, 大量实验结果也显示仅采用一套模型参数, 这类模型不能同时准确地描述橡胶在多种加载模式下的应力响应. 为了克服上述模型的不足, 本文在熵弹性的模型基础上引入缠结约束效应. 微观上, 采用Langevin统计模型来表征熵弹性变形自由能, 通过管模型(tube model)引入缠结约束自由能, 并基于仿射假设, 建立微观变形与宏观变形之间的映射关系. 在宏观上, 所建立的超弹性模型的Helmholtz自由能同时包含熵弹性和缠结约束两部分, 其中熵弹性自由能与经典的Arruda-Boyce八链模型一致, 依赖于柯西-格林应变张量的第一不变量, 而缠结约束自由能依赖于柯西-格林应变张量的第二不变量. 与文献中的实验结果对比发现, 该三参数模型能准确地预测实验中所测得的橡胶材料在单轴拉伸、纯剪切和等双轴拉伸变形条件下的应力响应, 也能较好地描述不同预拉伸比条件下双轴拉伸实验结果. 最后, 本文比较了所建立的基于应变不变量的缠结约束模型与文献中相关的缠结约束模型在多种加载模式下自由能的异同. 总的来说, 本文所建立的本构理论能准确模拟橡胶等软材料的大变形力学行为, 对其工程应用有促进作用.   相似文献   

3.
4.
Rubber-like materials are very applicable in almost all fields of industries, but due to their large deformation characteristic, they can exhibit a variety of instabilities. Accordingly, many researchers have been motivated to investigate the effects of different parameters on the stability of hyperelastic cylindrical tubes under finite deformation, while the effects of temperature gradient have not been considered. In this paper, the effects of temperature variation on the stability and thermo-mechanical behavior of the cylindrical tubes made of the entropic materials such as rubber-like materials and elastomers are investigated via an effective strain energy density function. To this purpose, an Ogden-type strain energy density with only integer powers is applied in order to determine an analytical solution, not involving the integral form, for the stress distribution through the wall thickness of cylindrical tubes at finite deformation thermoelasticity. This problem is examined in two cases including (i) a thick-walled cylindrical tube under internal pressure and uniform variation of temperature and (ii) a thick-walled cylindrical tube under internal pressure and temperature gradient, simultaneously. It was observed that the positive temperature gradients in comparison with environment temperatures improve the stability of the circular tubes made of the entropic materials.  相似文献   

5.
A stress gradient elasticity theory is developed which is based on the Eringen method to address nonlocal elasticity by means of differential equations. By suitable thermodynamics arguments (involving the free enthalpy instead of the free internal energy), the restrictions on the related constitutive equations are determined, which include the well-known Eringen stress gradient constitutive equations, as well as the associated (so far uncertain) boundary conditions. The proposed theory exhibits complementary characters with respect to the analogous strain gradient elasticity theory. The associated boundary-value problem is shown to admit a unique solution characterized by a Hellinger–Reissner type variational principle. The main differences between the Eringen stress gradient model and the concomitant Aifantis strain gradient model are pointed out. A rigorous formulation of the stress gradient Euler–Bernoulli beam is provided; the response of this beam model is discussed as for its sensitivity to the stress gradient effects and compared with the analogous strain gradient beam model.  相似文献   

6.
Liquid crystalline elastomers (LCEs) can undergo extremely large reversible shape changes when exposed to external stimuli, such as mechanical deformations, heating or illumination. The deformation of LCEs result from a combination of directional reorientation of the nematic director and entropic elasticity. In this paper, we study the energetics of initially flat, thin LCE membranes by stress driven reorientation of the nematic director. The energy functional used in the variational formulation includes contributions depending on the deformation gradient and the second gradient of the deformation. The deformation gradient models the in-plane stretching of the membrane. The second gradient regularises the non-convex membrane energy functional so that infinitely fine in-plane microstructures and infinitely fine out-of-plane membrane wrinkling are penalised. For a specific example, our computational results show that a non-developable surface can be generated from an initially flat sheet at cost of only energy terms resulting from the second gradients. That is, Gaussian curvature can be generated in LCE membranes without the cost of stretch energy in contrast to conventional materials.  相似文献   

7.
《力学快报》2022,12(5):100355
Holding an object by clamping force is a fundamental phenomena. Layered or laminated architectures with internal sliding features are essential mechanism in natural and man-made structural system. In this paper, we combine the layered architecture and clamping mechanism to form a multilayered clamper and study the clamping force with internal friction. Our investigations show that the clamping force and energy dissipation are very much depend on the number of layers, its geometry and elasticity, as well as internal friction. The central goal of studying the multilayered clamp is not only to predict the clamping force, but also as a representative case to help finding some clue on the universal behaviours of multilayered architectures with internal friction.  相似文献   

8.
The bending analysis of a thin rectangular plate is carried out in the framework of the second gradient elasticity. In contrast to the classical plate theory, the gradient elasticity can capture the size effects by introducing internal length. In second gradient elasticity model, two internal lengths are present, and the potential energy function is assumed to be quadratic function in terms of strain, first- and second-order gradient strain. Second gradient theory captures the size effects of a structure with high strain gradients more effectively rather than first strain gradient elasticity. Adopting the Kirchhoff’s theory of plate, the plane stress dimension reduction is applied to the stress field, and the governing equation and possible boundary conditions are derived in a variational approach. The governing partial differential equation can be simplified to the first gradient or classical elasticity by setting first or both internal lengths equal to zero, respectively. The clamped and simply supported boundary conditions are derived from the variational equations. As an example, static, stability and free vibration analyses of a simply supported rectangular plate are presented analytically.  相似文献   

9.
In this article, an asymmetric theory of nonlocal elasticity is developed on the basis of three dimensional atomic lattice model, the Galileo invariance for constitutive equations and by use of Fourier transformation of generalized function and energy method. It is shown that nonlocal characteristic functions (or constitutive parameters of internal elastic energy) can be explicitly expressed in terms of interacting forces connecting atoms, and the general model of nonlocal theory with rotation effects is asymmetric. Both symmetric stress and anti-symmetric stress is a nonlocal function of strain and local rotation for anisotropic materials. For isotropic materials, symmetric stress is only a nonlocal function of strain, while antisymmetric stress is only a nonlocal function of local rotation.  相似文献   

10.
This paper examines all the possible types of thermomechanical constraints in finite-deformational elasticity. By a thermomechanical constraint we mean a functional relationship between a mechanical variable, either the deformation gradient or the stress, and a thermal variable, temperature, entropy or one of the energy potentials; internal energy, Helmholtz free energy, Gibbs free energy or enthalpy. It is shown that for the temperature-deformation, entropy-stress, enthalpy-deformation, and Helmholtz free energy-stress constraints equilibrium states are unstable, in the sense that certain perturbations of the equilibrium state grow exponentially. By considering the constrained materials as constitutive limits of unconstrained materials, it is shown that the instability is associated with the violation of the Legendre–Hadamard condition on the internal energy. The entropy-deformation, temperature-stress, internal energy-stress, and Gibbs free energy-deformation constraints do not exhibit this instability. It is proposed that stability of the rest state (or equivalently convexity of internal energy) is a necessary requirement for a model to be physically valid, and hence entropy-deformation, temperature-stress, internal energy-stress, and Gibbs free energy-deformation constraints are physical, whereas temperature-deformation constraints (including the customary notion of thermal expansion that density is a function of temperature only), entropy-stress constraints, enthalpy-deformation constraints, and Helmholtz free energy-stress constraints are not.  相似文献   

11.
The application of modern non-linear continuum thermodynamics to the analysis of energy dissipation in both isothermal and non-isothermal flow of polymers is discussed. A fundamental simplification of the field equation for the balance of energy arises if the assumption is made that the flowing polymer is a material with entropic elasticity. This assumption is partly justified by structural arguments, and its validity can be checked experimentally. The results of the experiments performed support the validity of the assumption.  相似文献   

12.
An experimental study and a method for simulating the constitutive response of elastomers at temperatures in the chemorheological range (90-150 °C for natural rubber) are presented. A comprehensive set of uniaxial experiments for a variety of prescribed temperature histories is performed on natural rubber specimens that exhibit finite elasticity, entropic stiffening with temperature, viscoelasticity, scission, and oxygen diffusion/reaction effects. The simulation approach is based on a multi-network framework for finite elasticity, isothermal incompressibility, thermal expansion, and temperature-induced degradation. The model extends previous work to account for kinetics of scission for arbitrary time-varying temperature histories and incorporates the effects of viscoelastic relaxation and diffusion-limited oxidative scission. The model is calibrated to experiments performed on a commercially-available filled natural rubber material, and numerical simulations are compared favorably to experiments for a variety of temperature histories.  相似文献   

13.
This is a modest contribution on higher-order continuum theory for predicting size effects in small-scale objects. It relates to a preceding article of the journal by the same authors(AMSS, 2013, 26: 9-20) which considered the longitudinal dynamical analysis of a gradient elastic fiber but, in addition to an internal length, an internal time parameter is also introduced to model delay/acceleration effects associated with the underlying microstructure. In particular, the free transverse vibration of a double-walled carbon nanotube(DWNT) is studied by employing gradient elasticity with internal inertia. The inner and outer carbon nanotubes are modeled as two individual elastic beams interacting with each other through van der Waals(vdW) forces. General explicit expressions are derived for the natural frequencies and the associated inner-to-outer tube amplitude ratios for the case of simply supported DWNTs. The effects of internal length(or scale)and internal time(or inertia) on the vibration behavior are evaluated. The results indicate that the internal length and time parameters of the adopted strain gradient-internal inertia generalized elasticity model have little influence on the lower order coaxial and noncoaxial vibration modes,but a significant one on the higher order modes.  相似文献   

14.
Based on the non-equilibrium thermodynamic theory, a new thermo-viscoelastic constitutive model for an incompressible material is proposed. This model can be considered as a kind of generalization of the non-Gaussian network theory in rubber elasticity to include the viscous and the thermal effects. A set of second rank tensorial internal variables was introduced, and in order to adequately describe the evolution of these internal variables, a new expression of the Helmholtz free energy was suggested. The mechanical behavior of the thermo-viscoelastic material under simple shear deformation was studied, and the “ viscous dissipation induced“ anisotropy due to the change of orientation distribution of molecular chains was examined. Influences of strain rate and thermal softening produced by the viscous dissipation on the shear stress were also discussed. Finally, the model predictions were compared with the experimental results performed by G‘ Sell et al. , thus the validity of the proposed model is verified.  相似文献   

15.
During adiabatic deformation experiments on polyisobutylene of various molecular weights and on polyvinylacetate, the temperature change was measured. The thermal effects occurring during the subsequent stress relaxation were also recorded. From all data, the conclusion was drawn that the entropic elasticity theory is obeyed for temperatures sufficiently above the glass transition temperature. When the value of Tg is approached, some interesting energy effects become appreciable.  相似文献   

16.
A new method for determining the overall behavior of composite materials comprising nonlinear viscoelastic and elasto-viscoplastic constituents is presented. Part I of this work showed that upon use of an implicit time-discretization scheme, the evolution equations describing the constitutive behavior of the phases can be reduced to the minimization of an incremental energy function. This minimization problem is rigorously equivalent to a nonlinear thermoelastic problem with a transformation strain which is a nonuniform field (not even uniform within the phases). In part I of this paper the nonlinearity was handled using a variational (or secant) technique. In this second part of the study, a proper modification of the second-order procedure of Ponte Castañeda is proposed and leads to replacing, at each time-step, the actual nonlinear viscoelastic composite by a linear viscoelastic one. The linearized problem is even further simplified by using an “effective internal variable” in each individual phase. The resulting predictions are in good agreement with exact results and improve on the predictions of the secant model proposed in part I of this paper.  相似文献   

17.
There is an ever-growing need for predictive models for the elasto-viscoplastic deformation of solids. Our goal in this paper is to incorporate recently developed out-of-equilibrium statistical concepts into a thermodynamically consistent, finite-deformation, continuum framework for deforming amorphous solids. The basic premise is that the configurational degrees of freedom of the material – the part of the internal energy/entropy that corresponds to mechanically stable microscopic configurations – are characterized by a configurational temperature that might differ from that of the vibrational degrees of freedom, which equilibrate rapidly with an external heat bath. This results in an approximate internal energy decomposition into weakly interacting configurational and vibrational subsystems, which exchange energy following a Fourier-like law, leading to a thermomechanical framework permitting two well-defined temperatures. In this framework, internal variables, that carry information about the state of the material equilibrate with the configurational subsystem, are explicitly associated with energy and entropy of their own, and couple to a viscoplastic flow rule. The coefficients that determine the rate of flow of entropy and heat between different internal systems are proposed to explicitly depend on the rate of irreversible deformation. As an application of this framework, we discuss two constitutive models for the response of glassy materials, a simple phenomenological model and a model related to the concept of Shear-Transformation-Zones as the basis for internal variables. The models account for several salient features of glassy deformation phenomenology. Directions for future investigation are briefly discussed.  相似文献   

18.
In this part I of a two part series, a rate-independent hybrid phenomenological constitutive model applicable for single phased polycrystalline ferroelectroelastic ceramics is presented. The term “hybrid” refers to the fact that features from macroscopic phenomenological models and micro-electromechanical phenomenological models are combined. In particular, functional forms for a switching function and the Helmholtz free energy are assumed as in many macroscopic phenomenological models; and the volume fractions of domain variants are used to describe the internal material state, which is a key feature of micro-electromechanical phenomenological models. The approach described in this paper is an attempt to combine the advantages of macroscopic and micro-electromechanical material models. Its potential is demonstrated by comparison with experimental data for barium titanate. Finally, it is shown that the model for single phased materials cannot reproduce the material behavior of morphotropic PZT ceramics based on a realistic choice for the material parameters. This serves as a motivation for part II of the series, which deals with the modeling of morphotropic PZT ceramics taking into account the micro-structural specifics of these materials.  相似文献   

19.
Initially isotropic aggregates of crystalline grains show a texture-induced anisotropy of both their inelastic and elastic behavior when submitted to large inelastic deformations. The latter, however, is normally neglected, although experiments as well as numerical simulations clearly show a strong alteration of the elastic properties for certain materials. The main purpose of the work is to formulate a phenomenological model for the evolution of the elastic properties of cubic crystal aggregates. The effective elastic properties are determined by orientation averages of the local elasticity tensors. Arithmetic, geometric, and harmonic averages are compared. It can be shown that for cubic crystal aggregates all of these averages depend on the same irreducible fourth-order tensor, which represents the purely anisotropic portion of the effective elasticity tensor. Coupled equations for the flow rule and the evolution of the anisotropic part of the elasticity tensor are formulated. The flow rule is based on an anisotropic norm of the stress deviator defined by means of the elastic anisotropy. In the evolution equation for the anisotropic part of the elasticity tensor the direction of the rate of change depends only on the inelastic rate of deformation. The evolution equation is derived according to the theory of isotropic tensor functions. The transition from an elastically isotropic initial state to a (path-dependent) final anisotropic state is discussed for polycrystalline copper. The predictions of the model are compared with micro–macro simulations based on the Taylor–Lin model and experimental data.  相似文献   

20.
In this article we investigate several models contained in the literature in the case of near-incompressibility based on invariants in terms of polyconvexity and coerciveness inequality, which are sufficient to guarantee the existence of a solution. These models are due to Rivlin and Saunders, namely the generalized polynomial-type elasticity, and Arruda and Boyce. The extension to near-incompressibility is usually carried out by an additive decomposition of the strain energy into a volume-changing and a volume-preserving part, where the volume-changing part depends on the determinant of the deformation gradient and the volume-preserving part on the invariants of the unimodular right Cauchy–Green tensor. It will be shown that the Arruda–Boyce model satisfies the polyconvexity condition, whereas the polynomial-type elasticity does not. Therefore, we propose a new class of strain-energy functions depending on invariants. Moreover, we focus our attention on the structure of further isotropic strain-energy functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号