首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation is made into the convective heating of a blunt-nosed body in an expanding stream of heated gas. The gas parameters at the outer edge of the boundary layer are determined on the basis of a solution obtained earlier by the authors [3]. Expressions are obtained which make it possible to convert the convective heat flux to a body in a uniform gas stream to one in a nonuniform stream. Dimensionless numbers are found and their influence on the convective heat flux to the body is investigated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 127–133, July–August, 1981.  相似文献   

2.
Numerical simulation was performed to study convective structures in a thin silicone oil layer heated from below, whose free surface is exposed to air flow generating drift flow. The basic equations are transformation to a form suitable for spectral methods. The steady flow velocity profile obtained in a laboratory experiment is calculated. It is shown that increasing the Reynolds number leads to the transition from polygonal convective cells to longitudinal rolls (elongated along the flow). The dependence of the transition Reynolds number on the temperature on the lower boundary of the layer is obtained. The calculation results are compared with experimental data.  相似文献   

3.
Planar solidification of a warm flowing liquid with the convective heat transfer to the growing solid layer, has been analysed for the boundary conditions of constant temperature, constant heat flux and convective heat flux at the surface respectively. The mathematical formulation of the problem resulted in a coupled set of two differential equations in temperature and solid thickness as function of position, time and the problem parameters. Analytical expressions for the temperature distribution within the growing solid layer, the rate of solidification and the solidification time are obtained. The perturbation techniques employed here is simple and straight forward in contrast with the earlier techniques. Good agreement between the experimental results and the present solutions is obtained for the convective heat flux boundary condition. The results of this analysis are useful in the design and analysis of experiments dealing with freezing/melting in one dimension. The role of the parameter Stefan number which is small for phase change materials, is discussed in context with the storage of thermal energy.  相似文献   

4.
The onset of convection and its nonlinear regimes in a heated from below two-layer system consisting of a horizontal pure fluid layer and porous medium saturated by the same fluid is studied under the conditions of static gravitational field. The problem is solved numerically by the finite-difference method. The competition between the long-wave and short-wave convective modes at various ratios of the porous layer to the fluid layer thicknesses is analyzed. The data on the nature of convective motion excitation and flow structure transformation are obtained for the range of the Rayleigh numbers up to quintuple supercriticality. It has been found that in the case of a thick porous layer the steady-state convective regime occurring after the establishment of the mechanical equilibrium becomes unstable and gives way to the oscillatory regime at some value of the Rayleigh number. As the Rayleigh number grows further the oscillatory regime of convection is again replaced by the steady-state convective regime.  相似文献   

5.
A detailed experimental study of the heat transfer in an open isothermal cubic cavity for mixed natural and forced convection is reported. First the experimental model with a temperature control system, the experimental procedure, and the method for determination of the convective heat losses from the experimental data are presented. After presentation of the experimental conditions for the three models of different sizes that were tested, dimensionless parameters (Gr, Re, and Nu numbers) are introduced to generalize the results. In this way, the main influence of natural convection can be separated, and, using regressional analysis, a general interdependence among Nusselt, Reynolds, and Grashof numbers can be obtained.

The local heat transfer effects are indicated by maps of local heat transfer coefficient distributions in the cavity for different orientations of the model. To reduce the effects of convective heat transfer, the influence of different types of front masks were analyzed. The usefulness of the experimental results obtained is shown by estimating the convective heat losses for the central solar receiver of the French solar power plant THEMIS.  相似文献   


6.
7.
Evolution of convective structures in a thin layer of an evaporating liquid (ethanol) located under a turbulent boundary layer of an airflow is studied experimentally and theoretically. Evolution of the structures is examined under conditions of an increased flow velocity. A transition is found from convective cells formed in the absence of the flow to convective rolls elongated in the streamwise direction. The theoretical analysis is performed within a two-dimensional model of the flow in the liquid layer. The boundary conditions on the liquid surface are obtained with the use of self-similar solutions for mean fields in the airflow. The onset and evolution of a periodic system of rolls are simulated numerically. Theoretical conclusions are compared with experimental data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 3–14, July–August, 2007.  相似文献   

8.
A relation between the height of a convective front rising in an unstratified medium and the momentum and heat fluxes released on the substrate surface is proposed for point, linear, and uniform plane sources arbitrarily dependent on time. This relation makes it possible to determine the integral power of a plume on the basis of optical observations of the height of the propagating convective front. As particular solutions, three classes of self-similar regimes related with the heat and momentum sources, whose rate is a step-shaped, power-law, or exponential function of time, are obtained. A one-dimensional integral model of a rising convective jet is constructed. The classes of self-similar jets corresponding to power or exponential heat and momentum sources are described. It is shown that all self-similar jets corresponding to heat and momentum sources governed by a power law with a fairly large exponent are characterized by the same temperature and velocity profiles.  相似文献   

9.
Symmetry with respect to the volumes of the particles is established for the coalescence kernels, the coefficient of capture in the convective encounter of particles, and the coefficient of turbulent interdiffusion. The coalescence kernels are determined for the cases of convective and turbulent encounter of particles in an external electric field. Approximate expressions for the kernels are obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 32–38, March–April, 1980.  相似文献   

10.
Following Ogden, a class of objective (Lagrangian and Eulerian) tensors is identified among the second-rank tensors characterizing continuum deformation, but a more general definition of objectivity than that used by Ogden is introduced. Time rates of tensors are determined using convective rates. Sufficient conditions of objectivity are obtained for convective rates of objective tensors. Objective convective rates of strain tensors are used to introduce pairs of symmetric stress and strain tensors conjugate in a generalized sense. The classical definitions of conjugate Lagrangian (after Hill) and Eulerian (after Xiao et al.) stress and strain tensors are particular cases of the definition of conjugacy of stress and strain tensors in the generalized sense used in the present paper. Pairs of objective stress and strain tensors conjugate in the generalized sense are used to formulate constitutive relations for a hyperelastic medium. A family of objective generalized strain tensors is introduced, which is broader than Hill’s family of strain tensors. The basic forms of the hyperelastic constitutive relations are obtained with the aid of pairs of Lagrangian stress and strain tensors conjugate after Hill (the strain tensors in these pairs belong to the family of generalized strain tensors). A method is presented for generating reduced forms of the constitutive relations with the aid of pairs of Lagrangian and Eulerian stress and strain tensors conjugate in the generalized sense which are obtained from pairs of Lagrangian tensors conjugate after Hill by mapping tensor fields on one configuration of a deformable body to tensor fields on another configuration.   相似文献   

11.
The objective of this paper is the development and assessment of a fourth‐order compact scheme for unsteady incompressible viscous flows. A brief review of the main developments of compact and high‐order schemes for incompressible flows is given. A numerical method is then presented for the simulation of unsteady incompressible flows based on fourth‐order compact discretization with physical boundary conditions implemented directly into the scheme. The equations are discretized on a staggered Cartesian non‐uniform grid and preserve a form of kinetic energy in the inviscid limit when a skew‐symmetric form of the convective terms is used. The accuracy and efficiency of the method are demonstrated in several inviscid and viscous flow problems. Results obtained with different combinations of second‐ and fourth‐order spatial discretizations and together with either the skew‐symmetric or divergence form of the convective term are compared. The performance of these schemes is further demonstrated by two challenging flow problems, linear instability in plane channel flow and a two‐dimensional dipole–wall interaction. Results show that the compact scheme is efficient and that the divergence and skew‐symmetric forms of the convective terms produce very similar results. In some but not all cases, a gain in accuracy and computational time is obtained with a high‐order discretization of only the convective and diffusive terms. Finally, the benefits of compact schemes with respect to second‐order schemes is discussed in the case of the fully developed turbulent channel flow. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The paper describes results from numerical experiments on the effects of thermomechanical coupling in a polypropylene homopolymer plastic cylinder of infinite length. The specimen is subjected to cyclic straining of fixed amplitude and cycle time. Thermal boundary conditions, in which convective heat loss only is considered, cover the full range of boundaries, from the ideally thermally insulated to the ideally convective case. The temperature change distributions obtained from the model are in accordance with expected behaviour and are quanlitatively confirmed by preliminary industrial tests.  相似文献   

13.
The volume-averaged equations are derived for convective flow in porous media. In the thermal energy equation viscous dissipation is taken into account, and a suitable form is obtained which is valid when Brinkman effects are significant.  相似文献   

14.
The thermal radiation effect on a steady mixed convective flow with heat transfer of a nonlinear (non-Newtonian) Williamson fluid past an exponentially shrinking porous sheet with a convective boundary condition is investigated numerically. In this study, both an assisting flow and an opposing flow are considered. The governing equations are converted into nonlinear ordinary differential equations by using a suitable transformation. A numerical solution of the problem is obtained by using the Matlab software package for different values of the governing parameters. The results show that dual nonsimilar solutions exist for the opposing flow, whereas the solution for the assisting flow is unique. It is also observed that the dual nonsimilar solutions exist only if a certain amount of mass suction is applied through the porous sheet, which depends on the Williamson parameter, convective parameter, and radiation parameter.  相似文献   

15.
The convective combustion of porous gunpowder and high explosives is an intermediate stage in the transition from layered combustion to detonation [1, 2]. The theory of convective combustion of such systems is developed in [3–6]. It has now become necessary to analyze the possibility of convective combustion of aerosuspensions. The present paper develops the theory of the combustion of such systems on the basis of an analysis of the equations of gas dynamics with distributed supply of mass and heat; the problem of nonstationary motion of a convective combustion front is formulated. In the homobaric approximation [7], when the pressure is assumed to be spatially homogeneous, an analytic solution to the problem is found; this determines the law of motion of the front and the distribution of the parameters that characterize the gas and the particles in the combustion zone. Necessary conditions for the transition from convective combustion to explosion are obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 49–56, September–October, 1980.I thank R. I. Nigmatulin for helpful comments and advice, and also V. A. Pyzh and V. K. Khudyakov for discussing the work.  相似文献   

16.
Numerical solutions are obtained for the system of integro-differential equations describing the flow of a viscous, heat-conducting, selectively radiating gas in the region between the shock wave and a blunt body. The calculations are made for bodies of radius from 0.1 to 3 m with stagnation temperature from 6000° to 15 000° K. As a result of the calculations the convective and radiative thermal fluxes in the vicinity of the stagnation point are obtained. The effect of injection on convective and radiative heat transfer is studied.The first calculations of radiative thermal fluxes in air were made about 10 years ago in [1,2]. However, the results did not take account of the effects of emission and reabsorption, nor the interaction of the convective and radiative heating processes. These effects have been studied primarily with the use of simplified models of a radiating gas. Most often the approximation used is that of a gray gas with absorption coefficient which is independent of wavelength ([3–6] and others).The appearance in the literature of quite detailed data on the selective spectral absorption coefficients of air over a wide temperature range [7,8] has made it possible to solve the direct problem of calculating the flow field of a selectively radiating gas behind a shock wave with account for all the effects mentioned above.  相似文献   

17.
The effect of the convective heat transfer component on the temperature field and thawing front dynamics of soils is investigated for high fluid percolation velocities in the thawed zone. The steady state interchange and approximate self-similarity methods are used to obtain upper and lower bounds of the solution of the Stefan problem with a convective heat transfer component in a porous medium. From the results of the calculations conclusions are drawn concerning the accuracy and limits of applicability of the solutions obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 166–171, March–April, 1987.  相似文献   

18.
A review of pool and forced convective boiling of binary mixtures   总被引:1,自引:0,他引:1  
Boiling of binary mixtures is characterized by a close linking between heat and mass transfer processes, with the evaporation rate usually being limited by the mass transfer process. This is significantly different from single-component systems where interfacial mass transfer rates are normally very high. Information on pool boiling of binary mixtures is widely available in the literature, whereas research on forced convective boiling of mixtures has become significant only over the last few years. This paper presents a brief review of experimental results obtained in pool and forced convective boiling of binary mixtures and upgrades the empirical or theoretical predictive tools for both situations.  相似文献   

19.
In this work, a measurement technique based on a single-beam coherent gradient sensing (CGS) interferometer is used to obtain line-of-sight projections of a 3-D temperature field in a convective fluid medium. Due to its inherent insensitivity to vibrations, simple and cost effective optical layout, and, most importantly, the absence of a separate reference beam, CGS is an attractive choice for measurements in convective fluids. In the present study, line-of-sight interferometric projections of a differentially heated water medium in a cylindrical cavity are presented for a cavity aspect ratio (diameter/height) of 3.9. The 3-D temperature field is then obtained using the line-of-sight interferometric projections with a 3-D tomographic reconstruction algorithm. The temperature field obtained shows the absence of a radial-symmetric pattern at a Rayleigh number of 1.6×105, which is in agreement with observations from the literature.  相似文献   

20.
The boundary-layer equations for axisymmetric stagnation point flow of a power-law fluid are solved by a similarity transformation, and values of the wall shear rate are obtained. Theoretical expressions for local and average Sherwood numbers are derived from the convective diffusion equation for systems with high Schmidt numbers. The results can be used to predict diffusion coefficients of dilute species in fluids with specified power-law characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号