首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
斜齿轮弹流润滑下的接触疲劳寿命计算   总被引:6,自引:6,他引:0  
经典齿轮接触疲劳强度理论是基于光滑表面赫兹干接触理论,而实际齿面具有粗糙度,且啮合轮齿多数处于混合润滑状态.本文基于齿轮润滑接触分析建立了渐开线斜齿轮的接触疲劳寿命计算模型.模型由齿轮润滑接触分析模型和基于次表面应力分布的疲劳寿命模型组成.首先将斜齿圆柱齿轮一对齿的瞬时啮合等效为两反向圆锥的接触问题,建立了齿轮的有限长弹流润滑计算模型,考虑了齿轮啮合周期内瞬时载荷、接触线长、卷吸速度等因素的影响,基于统一雷诺方程方法求得啮合齿对间的润滑压力和油膜厚度分布;在此基础上,计算轮齿接触区次表面的米歇斯应力分布,根据Zaretsky接触疲劳寿命计算模型,对齿轮组的接触疲劳寿命进行模拟预测.针对不同工况参数下接触疲劳寿命计算表明:润滑油黏度、轮齿表面粗糙度等因素对齿面接触疲劳寿命均有显著的影响.  相似文献   

2.
粗糙度纹理对有限长线接触混合润滑影响   总被引:2,自引:1,他引:1  
采用统一Reynolds方程建立有限长线接触混合润滑模型,研究横向、纵向和二维规则表面粗糙度的波长、幅值及工况变化对润滑影响.结果表明:波长、幅值与工况对三种表面粗糙度接触副的润滑影响类似;随着载荷增大,平均膜厚降低,摩擦系数、接触载荷比与接触面积比均增大;随着转速升高,平均膜厚增大,摩擦系数、接触载荷比与面积比均降低,其中摩擦系数随转速进一步增大而小幅升高.在润滑状态转换区域润滑特征参数变化显著,而其他润滑区域变化平缓.沿卷吸速度方向的压力与膜厚波动分布存在相位差,垂直方向则同相位;相同的工况和粗糙度参数时,纵向粗糙度分布更有利于接触润滑.  相似文献   

3.
随着船舶柴油机功率密度和转速等性能参数的不断提升,配气凸轮-挺柱副面临着更加严苛的工作环境,尤其是界面微观接触区的摩擦学特性,在瞬态载荷冲击、速度冲击、曲率变化及局部粗糙峰接触条件下,界面摩擦及闪温迅速突变,带来磨损和胶合等表面失效问题. 本研究中基于先进三维线接触混合润滑模型,考虑凸轮-挺柱副瞬态突变工况及几何变化、瞬态表面粗糙度影响以及润滑油非牛顿流体作用,采用稳定性好、收敛速度快的准系统数值分析方法开展凸轮-挺柱副摩擦闪温分析,揭示粗糙度参数、工况改变及几何结构对其润滑状态和摩擦闪温特性的影响规律,为船舶柴油机配气凸轮-挺柱副摩擦学优化设计及磨损胶合失效预测提供理论指导.   相似文献   

4.
王慰祖  黄平 《摩擦学学报》2004,24(3):254-257
利用Stribeck润滑曲线理论分析和薄膜润滑试验考察了不同表面粗糙度的钢球与圆盘点接触及钢滑块与圆盘面接触摩擦副的润滑状态,通过改变圆盘转速获得了包含薄膜润滑状态的Stribeck曲线.结果表明:在Stribeck曲线上可以划分出薄膜润滑状态,其位于摩擦系数谷底附近;薄膜润滑的产生及其区间大小同圆盘表面粗糙度密切相关;圆盘表面粗糙度较小时更易形成薄膜润滑状态,而圆盘表面粗糙度较大时薄膜润滑状态不明显;光滑表面对应的Stribeck曲线谷底较宽,相应的薄膜润滑区间亦较宽.  相似文献   

5.
方燕飞  马丽然 《摩擦学学报》2022,42(6):1138-1147
针对球-盘滑动试验,在磨合过程中获得超低摩擦的液体润滑状态,建立耦合流体润滑、粗糙接触力学、Archard磨损方程和相关物理参数(液体黏度、表面粗糙度和磨损系数)时变函数的混合模型,研究磨合过程中液体润滑的摩擦系数演化. 通过数值模拟结果可知:在磨合过程中,润滑介质等效黏度增大,形成流体动压润滑薄膜,有效隔开粗糙表面;其次在磨合过程中,新生成的表面粗糙度降低,减少粗糙峰承载比,实现超低摩擦润滑状态;最后在适当的液体黏度和提高表界面效应减少边界摩擦系数,可进一步实现液体超低摩擦润滑状态. 为磨合过程宏观液体润滑性能演化所建立的混合数值模型对提高液体润滑超低摩擦设计效率具有重要价值意义.   相似文献   

6.
谐波减速器黏着磨损失效加速寿命模型研究   总被引:2,自引:0,他引:2  
针对空间润滑谐波减速器黏着磨损失效的加速寿命试验方法问题,首先基于Johnson-Williamson的粗糙表面接触模型建立了混合润滑状态下的黏着磨损模型,模型表明磨损速率主要由粗糙表面微凸体接触承担的载荷比例决定.然后,对磨损部位进行考虑粗糙表面真实形貌与润滑剂流变特性的混合润滑数值分析表明,转速与载荷对微观界面接触与润滑分布状态的影响显著,温度的影响有限,因此传统提高转速并升高温度以保持油膜厚度一致的加速寿命试验方法已不适用.最后以增大转速、载荷并保持或增大混合润滑状态下微凸体接触承担的载荷为加速寿命试验准则,以微凸体承担载荷为加速应力建立了黏着磨损的加速寿命模型,并以不同工况的加速寿命试验与寿命分布统计对其准确性进行了验证.  相似文献   

7.
黏着力是列车安全与平稳运行的关键因素之一.最大黏着力与摩擦力有关,摩擦力的减小会导致黏着力的降低.表面粗糙度及其取向是影响摩擦系数的重要因素,然而,有关表面粗糙度取向对于混合润滑状态下摩擦系数的影响的研究结论似乎是矛盾的.用激光离散改性技术将车轮试样表面制备成具有菱形、纵纹、横纹3种典型的形貌,并且与不作激光离散改性处理的车轮试样作对比,用基于确定性模型的统一雷诺方程数值分析法和小比例尺度的轮轨试样摩擦学实验,得到的结论是:在油润滑状态下,激光表面形貌大幅提高摩擦系数,其中菱形对应的摩擦系数最大,纵纹与横纹的摩擦系数相差不大,摩擦系数的大小主要取决于由表面粗糙度取向决定的接触区内粗糙峰接触压力与总压力之比,侧流效应也是影响摩擦系数的重要因素,它主要取决于接触区内表面粗糙度的取向.  相似文献   

8.
戴翎  蒲伟  田兴  王家序  肖科 《摩擦学学报》2018,38(2):121-128
少齿差行星齿轮为避免齿顶干涉,通常会减小齿高,这可能会导致齿面实际接触宽度小于理论赫兹接触宽度,降低齿面接触强度.鉴于此,为研究少齿差行星传动短齿制对齿轮接触疲劳的影响,综合考虑了轮齿接触宽度、楔形间隙、齿宽有限长和齿面粗糙度等因素,建立少齿差行星齿轮短齿啮合的混合润滑统一方程,求解出啮合齿对间的压力分布、摩擦系数和轮齿接触区次表面应力分布,根据Zaretsky接触疲劳寿命计算模型,对不同工况下不同啮合位置的轮齿接触疲劳寿命进行预测.结果表明:接触宽度在少齿差行星齿轮的疲劳寿命预测中不容忽视,短齿啮合模型下的楔形间隙对啮入和啮出过程的疲劳寿命有不同影响.  相似文献   

9.
弹性流体动力润滑状态通常出现在机械高副零部件的点/线接触部位,如齿轮、轴承和蜗轮蜗杆等. 宏观上点/线接触在介观层面表现为两粗糙表面的接触,在微观层面上则又表现为微凸体间的接触. 由于在中/重载荷作用下,粗糙表面上的微凸体发生接触后会产生弹塑性/塑性变形,从而使得两粗糙表面的弹流润滑接触转变为弹塑性流体动力润滑接触. 此外,界面的接触刚度决定了机械装备的整机刚度. 为了精确获得弹性流体动力润滑状态下界面法向接触刚度及其主要影响因素,基于界面的法向接触刚度由固体接触刚度和润滑油膜刚度两部分构成的思想,根据固体弹塑性理论和流体动力学理论,分别对界面间微凸体侧接触及部分膜流体动力润滑进行分析,从微观入手揭示双粗糙表面弹塑性流体动力润滑接触机理,进而建立考虑微凸体侧接触弹塑性变形的流体动力润滑界面法向接触刚度模型. 通过仿真分析,揭示了法向载荷、卷吸速度、表面粗糙度及润滑介质特性等因素对润滑界面法向接触刚度的影响规律. 研究表明:在相同速度、粗糙度及润滑油黏度的工况下,固体接触刚度和油膜接触刚度均随着法向接触载荷的增加呈非线性增大;在相同载荷、速度及润滑油黏度的工况下,接触表面粗糙度越大,表面形貌对于润滑状态的影响较强,固体接触刚度占界面总刚度的主要部分,界面主要由固体承载;在相同载荷、粗糙度及润滑油黏度工况下,随着卷吸速度的增大,固体接触刚度逐渐减小,油膜刚度占界面总刚度的主要部分;在相同载荷、粗糙度及速度工况下,随着润滑油黏度的增大,油膜刚度基本保持不变,固体接触刚度基本不受润滑油黏度的影响. 通过理论建模准确获得单位面积弹塑性流体动力润滑结合面法向接触刚度,对改善机械装备动态性能、提高机械装备的可靠性具有重要的理论和实际意义.   相似文献   

10.
综合齿轮动力学和弹性流体动力润滑理论,建立基于临界平面法多轴疲劳寿命预测模型.首先根据齿轮啮合特性获取齿面接触的时变参数,采用平均滤波方法模拟齿面磨合后的粗糙状态,并将齿面粗糙形貌带入油膜厚度计算,并基于量纲化差分方法建立齿轮的热弹流动力润滑模型;随后,通过润滑界面压力和摩擦力的分布计算近表面应力状态,确定接触近表面任意平面的应力与应变幅;最终,采用临界平面方法计算Smith-Watson-Topper(SWT)参数和最易萌生裂纹的平面,最终确定齿轮疲劳点蚀寿命,并试验验证模型有效性.结果表明:粗糙表面造成压力、油膜厚度和温度等波动较大,最大应力集中分布在表面,疲劳点蚀的微裂纹首先在表面萌生;齿轮疲劳点蚀数值模型可有效预测不同润滑条件下的疲劳点蚀寿命.  相似文献   

11.
金属轧制过程辊缝非稳态混合润滑特性研究   总被引:2,自引:1,他引:1  
根据Tsao和Sargent的混合润滑假设,建立了板带轧制时混合润滑状态下的非稳态润滑基本模型.系统分析了非稳态混合润滑状态下,基于正弦后张应力输入时,摩擦应力、压应力随时间和表面粗糙度变化的分布情况,以及基于某一压下率下在不同时刻表面粗糙度对摩擦应力、压应力分布的影响.结果表明:在较大的后张应力情形下,工作区中的压应力对表面粗糙度非常敏感,且随着表面粗糙度的增加相应增加;当后张应力减小时,压应力对表面粗糙度的敏感度下降.表面粗糙度对工作区中摩擦应力的分布有较大影响,当有较大后张应力输入时,辊缝间压应力相应较低,此时摩擦应力大小分布对表面粗糙度非常敏感,且随着表面粗糙度的增加而增加.与后张应力相比,表面粗糙度对摩擦应力的影响更为显著.  相似文献   

12.
点接触润滑粗糙表面滑动摩擦力的预测研究   总被引:1,自引:5,他引:1  
在整个润滑区域内基于统一Reynolds方程的混合润滑模型,根据流变模型计算流体摩擦力,根据边界膜极限剪应力模型计算微突体接触摩擦力,二者相加得到混合润滑摩擦力.分析了粗糙度幅值和纹理对摩擦系数的影响以及非牛顿流变模型对流体摩擦系数的影响.模拟跨越整个润滑区,即弹流润滑、混合润滑和边界润滑,得到完整的Stribeck曲线.结果表明,表面越粗糙,混合润滑的摩擦系数越大,弹流润滑和边界润滑时粗糙度幅值影响很小.交叉斜纹的润滑效果优于横向纹理.不同极限剪应力流变模型计算的摩擦系数相差不大.  相似文献   

13.
面接触条件下海藻酸钠的水基润滑   总被引:1,自引:1,他引:0  
以海藻酸钠作为水基润滑添加剂,研究面接触条件下石英玻璃片摩擦副的摩擦学特性.采用红外光谱仪分析海藻酸钠的分子结构,采用3D表面轮廓仪测量试样的表面形貌,在微摩擦磨损试验机上测试不同摩擦副的摩擦系数.结果表明:面接触条件下,下试样表面粗糙度Ra值为0.555 nm时,上试样表面粗糙度大于下试样表面粗糙度时方可相对滑动,上试样表面粗糙度越大,摩擦系数越大.上下试样表面粗糙度合理搭配可保证海藻酸钠溶液能形成稳定的润滑膜,获得极低的摩擦系数.加入饱和氯化物破坏海藻酸钠水合分子层,摩擦系数急剧增大.海藻酸钠水基润滑层包括水分子层和海藻酸钠水合分子层,其中海藻酸钠水合分子层起主要作用.  相似文献   

14.
王桥医  方敏  陈娟  赵勇 《摩擦学学报》2013,33(5):495-500
综合运用摩擦润滑理论、流体力学理论、轧制理论,建立了考虑动态辊缝非稳态润滑过程多因素耦合轧制界面力学模型.该模型综合运用了基于非稳态润滑过程的界面摩擦模型、工作辊运动模型、辊缝应力分布模型构成的界面薄膜约束多因素耦合模型.系统分析了非稳态混合润滑状态下,当压下率和表面粗糙度为定值时不同时刻工作区压应力和摩擦应力的分布情况,以及压下率为定值时工作区压应力、摩擦应力随表面粗糙度和后张应力变化的情况.结果表明:在压下率和表面粗糙度为定值时,当具有较大的后张应力时,工作区压应力和摩擦应力却较低,同时压应力梯度和摩擦应力梯度也相当小,摩擦应力在入口和出口边缘处达到最大,当后张应力减小时,辊缝间压应力和摩擦应力增加,压应力梯度和摩擦应力梯度较大;在压下率为定值而表面粗糙度为变量时,当后张应力较大时,表面粗糙度对工作区中的压应力和摩擦应力影响非常大,辊缝间压应力和摩擦应力随着表面粗糙度的增加而增加,当后张应力较小时,表面粗糙度对工作区中的压应力和摩擦应力影响不太明显.  相似文献   

15.
综合考虑接触几何、接触载荷、速度矢量、卷吸夹角、表面粗糙度、流变特性等因素,研究了不同啮合位置以及不同转速下弧齿锥齿轮的摩擦系数与啮合效率.结果表明:一对啮合副从啮入到啮出过程中,摩擦系数先增大后减小,与相对滑动速度变化趋势相反;一个啮合周期内,弧齿锥齿轮啮合效率与摩擦系数变化规律相似,但在啮出点附近,由于下一对啮合副进入啮合,啮合效率开始增大;随着转速增大,摩擦系数减小,啮合效率增大.采用文献中已有摩擦系数计算方法分析了弧齿锥齿轮摩擦系数和啮合效率,并与本文中的计算结果进行对比.结果表明:在节点啮合时,采用经验公式与简化算法的摩擦系数预测结果误差较大,而啮合效率计算误差较小;混合润滑和全膜润滑状态下,基于摩擦系数简化算法的弧齿锥齿轮效率计算结果与本文中的计算结果相近.  相似文献   

16.
本文在铸铁材料油润滑线接触滑动磨损状态研究的基础上,对边界润滑区典型的薄片状磨屑之形成过程进行了考察。通过对磨损表面的几何形貌、磨屑的形态和内部显微组织变化的分析,提出了薄片状磨屑的塑性流动形成机制。作者认为,薄片状磨屑的形成是磨损表面材料在局部应力和摩擦热的作用下以3种方式发生塑性流动的结果:当摩擦方向垂直于磨削加工条纹时为单侧塑性流动;当摩擦方向平行于磨削加工条纹时为双侧塑性流动;而在峰顶平台(磨削加工粗糙条纹磨合后形成的微平台)较大且载荷较高时,则为平台上的材料沿着摩擦方向向前挤压流动。  相似文献   

17.
引入特征粗糙度参数的Stribeck曲线试验研究   总被引:3,自引:2,他引:1  
为探讨表面粗糙度对Stribeck曲线的影响,对不同初始表面的不锈钢销试件与45#钢盘试件在浸油润滑条件下进行摩擦磨损试验,研究摩擦系数的变化规律.结果表明:摩擦副表面越粗糙,对应Stribeck曲线上混合润滑区域面积越大,曲线斜率越小,使得不同表面粗糙度下的摩擦系数试验模型不具有唯一性.因此,将由分形参数导出的能客观表征粗糙表面的"特征粗糙度"参数引入Stribeck动压参数,从而提出新的动压参数.在新的动压参数下,具有不同表面粗糙度摩擦副的Stribeck曲线具有较好的一致性,继而可建立与粗糙度无关的摩擦系数试验模型.  相似文献   

18.
姚华平  黄平 《摩擦学学报》2008,28(2):150-154
分析了微米级润滑膜条件下,光滑表面在静止粗糙表面上平行运动时的润滑状态及其承载机制,利用Reynolds流体润滑方程分析粗糙度对油膜压力、载荷及摩擦系数的影响,采用有限差分法计算在正弦和随机粗糙峰条件下油膜的压力分布曲面图,通过改变正弦粗糙度的峰高和波长分析油膜承载能力和摩擦系数随粗糙度变化的规律,同时分析了最小油膜厚度对润滑状态的影响.结果表明:两光滑平行运动的平面无法承载,而粗糙表面微粗糙峰的收敛楔形部分可以形成流体动压润滑膜并承受一定载荷;在给定最小油膜厚度的条件下,随着正弦波峰值增加,承载能力达到最大值后缓慢降低,摩擦系数达到最小值后缓慢增大;除了粗糙峰波长很小时摩擦系数很大以外,波长对摩擦系数的影响很小,而承载能力随波长以二次曲线变化并出现最大值;在给定粗糙度幅值条件下,当最小膜厚在1~100 μm时,随着最小油膜厚度的增加,承载能力减小,摩擦系数逐渐增大.  相似文献   

19.
基于载荷分担理论的渐开线斜齿轮热混合弹流润滑分析   总被引:5,自引:4,他引:1  
沿接触线把斜齿轮分成许多小薄片,每一薄片看成具有当量角速度的直齿轮,根据欧拉方程得到任一接触点处的曲率半径和表面速度.然后基于载荷分担、弹流润滑和粗糙线接触理论,建立了考虑表面粗糙度的斜齿轮传动混合热弹流润滑模型.研究了斜齿轮传动稳态载荷分布下牛顿流体和Carreau流体时的润滑特性.结果表明:牛顿流体和Carreau非牛顿流体模型下,中心油膜厚度、油膜承载比例、油膜温升随时间和接触线的变化规律相同.牛顿流体下的摩擦系数较工程实际偏大.Carreau非牛顿流体模型下摩擦系数和工程实际相符,其随接触线啮合位置的变化规律与油膜厚度正好相反.  相似文献   

20.
考察了钛酸钾晶须对石墨-硼酸系固体润滑膜摩擦磨损性能的影响,采用扫描电子显微镜观察分析了不同温度下润滑膜试样磨损表面形貌.结果表明:石墨-硼酸及石墨-硼酸-钛酸钾晶须固体润滑膜在室温下同不锈钢配副的摩擦系数约为0.08,耐磨寿命(滑动摩擦行程)保持在15000m以上;在300℃下的初始摩擦系数变化不大,在500℃下摩擦系数变化较大;但在摩擦初期2种固体润滑膜的摩擦系数无明显差别;随着摩擦过程的进行,不含钛酸钾晶须的润滑膜试样的摩擦系数在短时间内迅速增大,而含钛酸钾晶须试样的耐磨寿命比不含钛酸钾晶须试样的高2倍.这是由于钛酸钾晶须增强了固体润滑膜的强度及其在底材表面和附着力所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号