首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An alternate yet general form of the classical effective thermal conductivity model (Maxwell model) for two-phase porous materials is presented, serving an explicit thermo-physical basis. It is demonstrated that the reduced effective thermal conductivity of the porous media due to non-conducting pore inclusions is caused by the mechanism of thermal stretching, which is a combination of reduced effective heat flow area and elongated heat transfer distance (thermal tortuosity).  相似文献   

3.
The effective thermal conductivity of matrix-inclusion-microcrack three-phase heterogeneous materials is investigated with a self-consistent micromechanical method (SCM) and a random microstructure finite element method(RMFEM). In the SCM, microcracks are assumed to be randomly distributed and penny-shaped and inclusions to be spherical, the crack effect is accounted for by introducing a crack density parameter, the effective thermal conductivity is derived which relates the macroscopic behavior to the crack density parameter. In the RMFEM, the highly irregular microstructure of the heterogeneous media is accurately described, the interaction among the matrix-inclusion-microcracks is exactly treated, the inclusion shape effect and crack size effect are considered. A Ni/ZrO2 particulate composite material containing randomly distributed, penny-shaped cracks is examined as an example. The main results obtained are: (1) the effective thermal conductivity is sensitive to the crack density and exhibits essentially a linear relationship with the density parameter; (2) the inclusion shape has a significant effect on the effective thermal conductivity and a polygon-shaped inclusion is more effective in increasing or decreasing the effective thermal conductivity than a sphere-shaped one; and (3) the SCM and RMFEM are compared and the two methods give the same effective property in the case in which the matrix thermal conductivity λ1 is greater than the inclusion one λ2. In the inverse case of λ1 < λ2, the two methods agree as the inclusion volume fraction and crack density are low and differ as they are high. A reasonable explanation for the agreement and deviation between the two methods in the case of λ1 < λ2 is made. This work was supported by the National Natural Science Foundation of China and Chnese “863” High-Tech, Program.  相似文献   

4.
The heat transfer problem relative to the modified chemical vapor deposition process has been analyzed and the effects of solid layer thickness, torch speed and tube rotation are studied. The quasi-steady three-dimensional energy equations have been solved for the temperature fields in the gas and the solid layer with a Gaussian heat flux boundary condition on the outer surface. Of particular interest is the effect of the solid layer thickness and the torch speed on inner surface temperature, gas temperature and thermophoretic velocity. The large change of the axial temperature distribution of the surface occurs for different solid layer thicknesses or torch speeds. The presence of the solid layer and tube rotation reduce the effects of nonuniform torch heating in the circumferential direction and the resulting surface temperatures are very uniform in this direction.  相似文献   

5.
Hyperbolic heat conduction in a plane slab, infinitely long solid cylinder and solid sphere with a time dependent boundary heat flux is analytically studied. The solution is based on the separation of variables method and Duhamel’s principle. The temperature distribution, the propagation and reflection of the temperature wave and the effect of geometry on the shape of the wave front are studied for the case of a rectangular pulsed boundary heat flux. Comparisons with the solution obtained for Fourier heat conduction are performed by considering the limit of a vanishing thermal relaxation time.  相似文献   

6.
Thermal contact resistance is due to imperfect contact of two bodies at the interface. It plays an important role in the dissipation of heat from electronic devices. The concept of individual heat flux tubes consisting of a single contact area and the corresponding gap which extends far in either solid was used in this study. The three dimensional conduction equation in the contact region was solved numerically for different shapes of gap and contact area and various thermal boundary conditions at locations far from the contact area. Constriction resistance defined as the ratio of the temperature difference across the contact surface to the rate of heat transfer through a heat flux channel was calculated for each case. The results have indicated that constriction resistance is strongly affected by the gap geometry, shape of contact area and certain end surface boundary conditions. The geometry dependence becomes more significant as the ratio of contact to total area becomes smaller. Given the fact that the shape of the contact region is highly unpredictable, the heat flux tube approach can hardly provide a reasonable estimate of the thermal contact resistance, unless the geometry of the contact region is properly modeled. Received on 5 January 1999  相似文献   

7.
粗糙表面之间接触热阻反问题研究   总被引:4,自引:1,他引:3  
当两个固体表面相互接触时,由于接触面粗糙度的影响,界面间就形成了非一致接触,这种接触导致热流收缩,进而产生接触热阻. 目前的理论研究主要集中在正问题研究,对反问题的研究相对较少. 接触热阻反问题研究是通过研究部分边界温度、热流和部分测量点的温度来反演得到界面上的接触热阻. 反问题研究在很多工程领域都有应用,如航空航天、机械制造、微电子等,是工程中确定接触热阻一种快速有效的方法. 本文采用边界元法和共轭梯度法研究了二维空间随坐标变化的接触热阻反问题. 为了验证方法的准确性和可行性,假定在已知部分测量点温度和真实接触热阻的情况下,反演计算得到界面的温度和热流,进而得到接触热阻,并与真实接触热阻进行比较. 结果表明采用边界元法和共轭梯度法在无测量误差的情况下,可以准确反演获得界面的真实接触热阻. 若存在测量误差,反演计算结果对测量误差极其敏感,反演结果误差会由于测量误差的引入而被放大. 为处理这种不适定性, 采用最小二乘法对反演计算结果进行校正,结果表明采用最小二乘法能够避开反问题中一些偏离实际值较大的测量点,显著提高反演计算结果的准确性.   相似文献   

8.
Combustion of methane-rich fuels frequently provides forced convective heating in industry, and the ability to predict the rate of heat transfer from such flames to solid surfaces is often desirable. Mathematical modelling of stagnation point heat flux has been achieved by numerical solution of the boundary layer equations, and by an analytical equation modified to include the effects of chemical reaction in the free stream flow and to allow for the enhancement in heat flux caused by the diffusion and exothermic recombination of reactive species in the boundary layer surrounding the heat receiving body. Predictions from these models have been compared with experimental data obtained in high temperature methane flames of various equivalence ratios. Within the equilibrium region of these flames, predictions from the modified analytical equation based on total Lewis numbers equal to and greater than one form a tight envelope around the experimental results, and hence provide a relatively simple method of predicting heat flux. Numerical solutions tend to slightly underestimate predictions from the analytical equation and experimental data, although agreement with the alternative prediction method increases with the surface temperature of the heat receiving body  相似文献   

9.
Several heat pipes were designed and manufactured to study the effect of the working fluids, container materials, and the wick structures on the heat transfer mechanism of the heat pipes. Also, the effect of the number of wick layers on the effective thermal conductivity and the heat transfer characteristics of the heat pipes have been investigated. It was found that the flow behavior of the working fluid depends on the wicking structures and the number of wick layers. The heat transfer characteristics and the effective thermal conductivity are related directly to the flow behavior. Increasing the number of wick layers (up to 16 layers) increases the heat flux with smaller temperature differences. The flattening phenomena of the thermal resistance was observed after 16 wicks layers due to the entrainment limit.  相似文献   

10.
Planar solidification of a warm flowing liquid with the convective heat transfer to the growing solid layer, has been analysed for the boundary conditions of constant temperature, constant heat flux and convective heat flux at the surface respectively. The mathematical formulation of the problem resulted in a coupled set of two differential equations in temperature and solid thickness as function of position, time and the problem parameters. Analytical expressions for the temperature distribution within the growing solid layer, the rate of solidification and the solidification time are obtained. The perturbation techniques employed here is simple and straight forward in contrast with the earlier techniques. Good agreement between the experimental results and the present solutions is obtained for the convective heat flux boundary condition. The results of this analysis are useful in the design and analysis of experiments dealing with freezing/melting in one dimension. The role of the parameter Stefan number which is small for phase change materials, is discussed in context with the storage of thermal energy.  相似文献   

11.
12.
Finger type double diffusive convective instability in a fluid-saturated porous medium is studied in the presence of coupled heat-solute diffusion. A local thermal non-equilibrium (LTNE) condition is invoked to model the Darcian porous medium which takes into account the energy transfer between the fluid and solid phases. Linear stability theory is implemented to compute the critical thermal Rayleigh number and the corresponding wavenumber exactly for the onset of stationary convection. The effects of Soret and Dufour cross-diffusion parameters, inter-phase heat transfer coefficient and porosity modified conductivity ratio on the instability of the system are investigated. The analysis shows that positive Soret mass flux triggers instability and positive Dufour energy flux enhances stability whereas their combined influence depends on the product of solutal Rayleigh number and Lewis number. It also reveals that cell width at the convection threshold gets affected only in the presence of both the cross-diffusion fluxes. Besides, asymptotic solutions for both small and large values of the inter-phase heat transfer coefficient and porosity modified conductivity ratio are found. An excellent agreement is found between the exact and asymptotic solutions.  相似文献   

13.
Pore-scale heat and fluid flow simulation through reconstructed porous media is presented with the aim of investigating the physics of heat flux splitting at the boundary of porous media. As such, the effects of the solid to fluid thermal conductivity ratio, porosity, pore-scale Reynolds number, Prandtl number and heat conduction within the solid matrix are investigated. The results of the present study for heat transfer coefficient and pressure drop are compared with available experimental data and good agreement was observed. The validated results are then used to investigate the validity of the existing volume-averaged models. It was observed that while results based on the volume-averaged models are reasonably close to current predictions for $\varepsilon \le 0.7$ , the discrepancy between the two becomes notable for higher porosities. While existing models rely exclusively on porosity and thermal conductivity ratio, our newly proposed correlations show the effects of Reynolds number on the heat split mechanism for high porosities. On the other hand, the Prandtl number, at least for the range of parameters studies here, is found to be less influential on the boundary heat split mechanism.  相似文献   

14.
A radiation and convection fluxmeter for high temperature applications   总被引:2,自引:0,他引:2  
Heat flux is an essential parameter for the diagnostic of thermal systems. In high temperature industrial environment, there are difficulties in measuring incident radiation heat flux as well as in differentiating between the convective and radiative components of heat flux on the heat transfer surface. A new method for heat flux measurement is being developed using a porous sensing element. The gas stream flowing through the porous element is used to measure the heat received by the sensor surface exposed to the hot gas environment. A numerical model of sensor with appropriate boundary condition has been developed in order to perform analysis of possible options regarding its design. The analysis includes: geometry of element, physical parameters of gas and solid and gas flow rate through the porous element. For the optimal selection of parameters, an experimental set-up was designed, including the sensor element with respective cooling and monitoring systems and a high temperature radiation source. The experimental set-up was used to obtain calibration curves for a number of sensors. The linear dependency of the heat flux and respective temperature difference of the gas were verified. The accuracy analysis of the sensor reading has proved high linearity of the calibration curve and accuracy of ±5%.  相似文献   

15.
The unsteady double diffusion of the boundary layer with the nanofluid flow near a three-dimensional (3D) stagnation point body is studied under a microgravity environment. The effects of g-jitter and thermal radiation exist under the microgravity environment, where there is a gravitational field with fluctuations. The flow problem is mathematically formulated into a system of equations derived from the physical laws and principles under the no-slip boundary condition. With the semi-similar transformation technique, the dimensional system of equations is reduced into a dimensionless system of equations, where the dependent variables of the problem are lessened. A numerical solution for the flow problem derived from the system of dimensionless partial differential equations is obtained with the Keller box method, which is an implicit finite difference approach. The effects studied are analyzed in terms of the physical quantities of principle interest with the fluid behavior characteristics, the heat transfer properties, and the concentration distributions. The results show that the value of the curvature ratio parameter represents the geometrical shape of the boundary body, where the stagnation point is located. The increased modulation amplitude parameter produces a fluctuating behavior on all physical quantities studied, where the fluctuating range becomes smaller when the oscillation frequency increases. Moreover, the addition of Cu nanoparticles enhances the thermal conductivity of the heat flux, and the thermal radiation could increase the heat transfer properties.  相似文献   

16.
This paper presents a multi-scale framework for analyzing coupled heat conduction and viscoelastic deformation of polymers reinforced with solid spherical particles. The viscoelastic and thermal properties of the polymer constituents are temperature dependent. A simplified micromechanical model for the particle reinforced composite is formulated to obtain the effective thermal properties and viscoelastic responses. The micromechanical model is implemented at material points within elements in the finite element (FE) analyses.  相似文献   

17.
We present a model of heat and mass transfer in an unsaturated zone of sand and silty clay soils, taking into account the effects of temperature gradients on the advective flux, and of the enhancement of thermal conduction by the process of latent heat transfer through vapor flow. The motivation for this study is to supply information for the planned storage of thermal energy in unsaturated soils and for hot waste storage. Information is required on the possibility of significant drying at a hot boundary, as this would reduce the thermal conductivity of a layer adjacent to the boundary and, thus, prevent effective heat transfer to the soil. This study indicates the possibility that the considered system may be unstable, with respect to the drying conditions, with the occurrence of drying depending on the initial and the boundary conditions. An analysis performed for certain boundary conditions of heat transfer and for given soil properties, disregarding the advective flux of energy, indicated that there are initial conditions of water content for which heating will not cause significant drying. Under these conditions, fine soils may be better suited for heat transfer at the hot boundary, due to their higher field capacity, although their heat conduction coefficients at saturation are lower than those of sandy soils. At present, these conclusions are limited to the range of 50–80°C. Potential effects of solute concentration at the hot boundary are indicated.  相似文献   

18.
This study introduces a micromechanical model for predicting effective thermo-viscoelastic behaviors of a functionally graded material (FGM). The studied FGM consists of two constituents with varying compositions through the thickness. The microstructure of the FGM is idealized as solid spherical particles spatially distributed in a homogeneous matrix. The mechanical properties of each constituent can vary with temperature and time, while the thermal properties are allowed to change with temperature. The FGM model includes a transition zone where the inclusion and matrix constituents are not well defined. At the transition zone, an interchange between the two constituents as inclusion and matrix takes place such that the maximum inclusion volume contents before and after the transition zone are less than 50%. A micromechanical model is used to determine through-thickness effective thermal conductivity, coefficient of thermal expansion, and time-dependent compliance/stiffness of the FGM. The material properties at the transition zone are assumed to vary linearly between the two properties at the bounds of the transition zone. The micromechanical model is designed to be compatible with finite element (FE) scheme and used to analyze heat conduction and thermo-viscoelastic responses of FGMs. Available experimental data and analytical solutions in the literature are used to verify the thermo-mechanical properties of FGMs. The effects of time and temperature dependent constituent properties on the overall temperature, stress, and displacement fields in the FGM are also examined.  相似文献   

19.
Heat transfer in the laminar boundary layer of a transparent gas flowing aroud a plane radiating surface is studied. Radiative heat-transfer processes in gases may be divided into two main groups. The first involves heat transfer in absorbing and radiating media. In this case, the effect of radiation lies in the introduction of new terms into the energy equation, representing internal heat sources and sinks. The second group embraces heat-transfer processes in a transparent gas when the effect of radiation on convection expresses itself solely by way of the boundary conditions. Here we study a case of practical importance belonging to the second group: heat transfer in the laminary boundary layer of a transparent gas flowing around a flat plate with the thermal flux qw specified on its surface.Novosibirsk. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 107–110, January–February, 1972.  相似文献   

20.
A local thermal non-equilibrium model has been considered for the case of thermally fully developed flow within a constant heat flux tube filled with a porous medium. Exact temperature profiles for the fluid and solid phases are found after combining the two individual energy equations and then transforming them into a single ordinary differential equation with respect to the temperature difference between the solid phase and the wall subject to constant heat flux. The exact solutions for the case of metal-foam and air combination reveal that the local thermal equilibrium assumption may fail for the case of constant heat flux wall. The Nusselt number is presented as a function of the Peclet number, which shows a significant increase due to both high stagnant thermal conductivity and thermal dispersion resulting from the presence of the metal-foam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号