首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 184 毫秒
1.
岩体启动压力梯度的大小是石油开采,工程防渗处理等方面需要考虑的影响因素。非线性渗流现象已被广泛所认同,低渗透性岩渗流存在启动压力梯度,它基本代表了流体产生渗流时的压力梯度大小。试验对试样进水端水压进行长期稳定控制,出水端采用精确测定流出水体积变化量的方法进行流量测定; 当渗出端水体积的变化量与时间呈直线关系时,即认为该时段渗透特征符合达西定律。通过对具有不同渗透性的软弱岩系统的试验测试,根据实测渗透系数与压力梯度的正相关关系,提出了拟启动压力梯度推算的"三次平均法",即:首先统一调整实测渗透系数值,然后确定绝对渗透系数值,再根据该值确定V0值, 3次取平均推算拟启动压力梯度的方法。分析表明:拟启动压力梯度随围压升高而增大,随岩石的绝对渗透系数降低而增大; 在渗透压差增大过程测得的拟启动压力梯度大于降低过程的拟启动压力梯度,这些都与理论分析结果相吻合。实例说明拟启动压力梯度推算"三次平均法"较为合理,易于推广使用。这为通过室内试验确定工程岩体启动渗流压力梯度的大小,提出了一种新的思路。  相似文献   

2.
低渗透煤层气藏中气-水两相不稳定渗流动态分析   总被引:5,自引:4,他引:1  
刘文超  刘曰武 《力学学报》2017,49(4):828-835
针对低渗透煤层渗流问题,考虑启动压力梯度及其引起的动边界和动边界内吸附气解吸作用的渗流模型研究目前仅限于单相流,而更符合实际的气-水两相渗流动边界模型未见报道.本文综合考虑了煤层吸附气的解吸作用、气-水两相渗流、非达西渗流、地层应力敏感等影响因素,进行了低渗透煤层的气-水两相渗流模型研究.采用了试井技术中的"分相处理"方法,修正了两相渗流的综合压缩系数和流度,并基于含气饱和度呈线性递减分布的假设,建立了煤层气藏的气-水两相渗流耦合模型.该数学模型不仅可以描述由于低渗透煤层中渗流存在启动压力梯度而产生的可表征煤层有效动用范围随时间变化的移动边界,还可以描述煤层有效动用范围内吸附气的解吸现象以及吸附气解吸作用所引起的煤层含气饱和度的上升;为了提高模型精度,控制方程还保留了二次压力梯度项.采用了稳定的全隐式有限差分方法进行了模型的数值求解,并验证了数值计算方法的正确性,获得了模型关于瞬时井底压力与压力导数响应的双对数特征曲线,由此分析了各渗流参数的敏感性影响.本文研究结果可为低渗透煤层气藏开发的气-水两相流试井技术提供渗流力学的理论基础.  相似文献   

3.
低渗透多孔介质渗流动边界模型的解析与数值解   总被引:1,自引:0,他引:1  
考虑启动压力梯度的低渗透多孔介质非达西渗流模型属于强非线性动边界问题, 分别利用相似变量变换方法和基于空间坐标变换的有限差分方法, 对内边界变压力情况下、考虑启动压力梯度的一维低渗透多孔介质非达西渗流动边界模型进行了精确解析与数值求解研究. 研究结果表明:该动边界模型存在唯一的精确解析解, 且所求得的精确解析解可严格验证数值解的正确性;且当启动压力梯度值趋于零时, 非达西渗流动边界模型的精确解析解将退化为达西渗流情况下的精确解析解. 由求解结果作出的非零无因次启动压力梯度下的地层压力分布曲线表现出紧支性特点, 其与达西渗流模型的有显著不同. 因此, 研究低渗透多孔介质中非稳态渗流问题时, 应该考虑动边界的影响. 研究内容完善了低渗透多孔介质的非达西渗流力学理论, 为低渗透油气藏开发的试井解释与油藏数值模拟技术提供了理论基础.   相似文献   

4.
基于低渗透多孔介质渗透率的渐变理论,确定了能精确描述低渗透多孔介质渗流特征的非线性运动方程,并通过实验数据拟合.验证了非线性运动方程的有效性。非线性渗流速度关于压力梯度具有连续-阶导数,方便于工程计算;由此建立了低渗透多孔介质的单相非线性径向渗流数学模型,并巧妙采用高效的Douglas-Jones预估一校正有限差分方法求得了其数值解。数值结果分析表明:非线性渗流模型为介于拟线性渗流模型和达西渗流模型之间的一种中间模型或理想模型,非线性渗流模型和拟线性渗流模型均存在动边界;拟线性渗流高估了启动压力梯度的影响,使得动边界的移动速度比实际情况慢得多;非线性越强,地层压力下降的范围越小,地层压力梯度越陡峭,影响地层压力的敏感性减弱,而影响地层压力梯度的敏感性增强。  相似文献   

5.
作为典型的致密多孔介质,煤岩储层已被证实存在启动压力梯度.根据煤层气垂直裂缝井的双线性流动机制,综合考虑启动压力梯度和井筒储存效应的影响,建立了一个新的低渗透煤层气有限导流垂直裂缝井双线性流动数学模型,采用Laplace变换和Stehfest数值反演方法对数学模型进行了求解,并分析了无因次启动压力梯度等参数对无因次井底压力及其导数曲线的影响规律.分析结果表明:典型的低渗透煤层气垂直裂缝井双线性流动曲线可划分为早期续流段、双线性流段、煤层线性流段、过渡流段和煤层边界线性流段5个特征阶段,其中由于启动压力梯度存在的影响,无因次井底压力及其导数曲线自煤层线性流段开始出现明显上翘,且启动压力梯度值越大,曲线上翘趋势越明显;此外,煤层边界线性流段呈现为单位斜率的直线,而非1/2斜率的线性流段直线.这些结果表现出启动压力梯度对低渗透煤层气垂直裂缝井双线性流动的影响,可用于指导现场煤层气井试井分析.  相似文献   

6.
初应力条件下超临界CO2气爆致裂规律研究   总被引:1,自引:0,他引:1  
为研究地下爆破工程中初始地应力条件下超临界CO2气爆的致裂规律,利用自主研发的三轴加载式超临界CO2气爆实验系统,对不同应力组合工况下混凝土试件进行了超临界CO2气爆致裂实验,实验结果表明超临界CO2气爆爆破峰值压力低且高压持续时间长,致裂过程不同于传统炸药爆破,分为动态和准静态过程:应力波将气爆孔附近介质压碎形成粉碎区,在环向拉应力作用下粉碎区周围介质产生径向裂隙的动态过程,高压CO2气体进入裂隙形成气楔,促使裂隙继续扩展的准静态过程,得到了气爆后试件沿最大初始压应力方向开裂的规律。通过理论计算的方法分析了初应力作用下气爆过程中介质应力状态的变化规律,揭示了初应力影响裂纹起裂和扩展的机理:位于气爆孔最大初始压应力方向的介质产生初始环向压应力最小,在超临界CO2径向冲击产生的环向拉应力作用下首先发生开裂;位于气爆孔最小初始压应力方向介质中初始环向压应力最大,开裂所需的径向冲击压力增大,开裂滞后;垂直裂隙方向的应力抑制裂隙的张开而阻碍CO2气体的进入,同时增大了裂隙扩展所需的气楔压力,气楔作用效果大幅减弱,对裂隙扩展的阻碍作用显著。裂隙的扩展速度与扩展距离呈“S型”曲线关系,初始压应力越大,裂隙扩展相同距离降低的速度值越大,且压碎区和裂隙扩展范围逐渐减小。  相似文献   

7.
??????????????????????о?   总被引:7,自引:1,他引:6  
根据岩心实验提出了两参数的非线性渗流方程,并在此基础上结合Buckly-Leverett 方程建立了非线性非混相驱替方程. 通过对该方程求解分析可知,与线性达西渗流相比,非 线性渗流的驱油相率较差;同一含水饱和度下的含水率更高;而储层中各点的压力梯度更大, 导致所需注采压差更大. 说明有效的开发低渗透油藏需要比中高渗油藏更小的井距和更高的 注采压力体系.  相似文献   

8.
为了更加准确地测量低渗透多孔介质中液体流动的启动压力梯度,本文设计了一种在微管中测量启动压力梯度的方法:将静态法和稳态流动实验相结合,研究微管内的去离子水从静态到流动状态整体的压力反应. 实验结果表明:由稳态流动实验得到微管启动压力梯度,是静态法所得启动压力梯度值的14.5倍,说明在以往通过动态实验值所推得启动压力梯度数值过大. 这可以解释为在油藏工程中,实验室测得的启动压力梯度往往过大,无法向现场推广的原因. 研究表明:可以将该方法用于低渗透岩心的启动压力梯度测量实验中,更加准确的获得低渗透油藏的启动压力梯度值. 本文的研究不仅证明了微米尺度下启动压力梯度的存在,而且给出了更加准确测量启动压力梯度的方法.  相似文献   

9.
可变形多孔介质渗透系数的测定方法   总被引:12,自引:1,他引:12  
徐曾和  徐小荷 《实验力学》1998,13(3):314-320
在Biot理论基础上给出可变形多孔介质耦合渗流基本方程;求出小试件一维定常耦合渗流问题的解答;表明在一维流固耦合情况下试件内部压力梯度有明显的非均匀性。因此通过实验确定可变形多孔介质渗透系数在数学上可归结为微分方程的反问题,传统的测试渗透系数的方法需要改进。介绍了可变形多孔介质渗透系数的测试原理和测试方法。对粒状多孔材料实验的结果表明,传统实验方法得到的渗透系数误差较大。  相似文献   

10.
双重孔隙介质THMM耦合模型及其有限元分析   总被引:1,自引:0,他引:1  
建立了一种饱和-非饱和遍有节理岩体的双重孔隙-裂隙介质热-水-应力-迁移耦合模型,其特点是应力场和温度场是单一的,但具有不同的孔隙渗流场、裂隙渗流场和孔隙浓度场、裂隙浓度场,以及可考虑裂隙的组数、间距、方向、连通率和刚度对本构关系的影响;并开发了相应的二维有限元程序.针对一个假定的高放废物地质处置库,就岩体为非饱和双重孔隙-裂隙介质和放射性核素泄漏的情况进行了数值分析,考察了岩体中的温度、负孔隙水压力、饱和度、地下水流速、核素浓度和主应力的状态.结果显示:孔隙和裂隙中的负水压力及核素浓度呈现不同的变化、分布;尽管裂隙水饱和度平均仅为孔隙水饱和度的1/10,但因裂隙的渗透系数比孔隙的渗透系数大4个数量级,故裂隙中地下水的流速约是孔隙中相应值的3倍;孔隙和裂隙中核素浓度的量值接近.  相似文献   

11.
This paper is based on the research we have done in recent years of the constitute law of gas seepage in rock fractures. Both experiments and theoretical derivations will be discussed. The gases used in our experiments include methane and CO2, both of which are highly adsorptive. The experiments were conducted mainly in coal fractures. The results reveal that the permeability coefficient of gas in rock fractures varies parabolically with respect to fracture pore pressure. When the pore pressure is below a certain value, the permeability coefficient decreases while the pore pressure increases. It is different from the water seepage law in fractures. Analysis shows that this abnormality is caused by adsorption. It is also concluded that the tangent deformation has the same effects as normal deformation on gas seepage law. The permeability of gas in fractures has a negative exponent relationship with both normal deformation and tangent deformation.  相似文献   

12.
In coal mining the water flow in broken rock is a very common phenomenon. Study of seepage properties of broken rock is one of the basic subjects required in order to understand the stability of rock surrounding roadways, preventing disasters such as water inrush and gas outbursts and developing underground resources. So far, quantitative studies on the nonlinear seepage properties of broken sandstone under different porosities are not extensive in the research literature. In this article, by means of an electro-hydraulic servo-controlled test system (MTS815.02) and a patent seepage device, the seepage properties under different conditions of porosity were tested on broken sandstone of five different grain sizes. Based on the loading method of controlling the axial compression displacement and steady permeating method, we obtained curves of the relation of pore pressure with time, as well as the relation curves between the pore pressure gradient for steady seepage and velocity. Furthermore, we calculated the permeability k and non-Darcy coefficient β corresponding to different porosities by fitting these curves with the binomial expression. This study indicates that: (1) the seepage properties of broken sandstone are closely related to grain size, load levels, and porosity structure; (2) the permeability k decreases, while the coefficient β increases with a decrease in porosity φ, but both the kφ and the βφ curves show some local fluctuations; (3) the permeability k of the broken sandstone has a magnitude of 10−14–10−12 m2, while the coefficient β ranges from 1010 to 1012 m−1. The results obtained provide some information for further study of the nonlinear seepage behavior of broken rock theoretically.  相似文献   

13.
The use of hot-wire anemometry in carbon dioxide flow under supercritical conditions has been analyzed and implemented for the first time. A two-sensor probe to simultaneously measure streamwise velocity and temperature in this flow has been designed and constructed. A calibration and test flow loop that can provide supercritical state conditions above the critical point has been also designed, fabricated and tested. The temperature and velocity flow fields of the flow loop can be varied at constant pressure. It has been found that, above the pseudo-critical temperature, the velocity sensor response fits King’s cooling law with a high correlation coefficient. The dependence of the King’s law parameters on temperature can be accurately presented with second or higher order polynomial or exponential fits, depending on the extent of the temperature range. Below the pseudocritical temperature the data is scattered, and the variation with temperature of the King’s law parameters, determined from calibration, is irregular. The influence on this data scatter of the strong variation of the fluid properties near the critical point is analyzed, and a possibility to reduce it is proposed. The temperature sensor response both above and below the pseudocritical temperature is similar to the response under normal conditions. It is linear with a very high correlation coefficient between the calibration data and the fitted curve. It is also shown that the temperature response is not affected by variation of the flow’s speed.  相似文献   

14.
The objective of the present study is to analyze the heat transfer correlations of supercritical CO2 cooled in horizontal circular tubes. In the paper, heat transfer correlations are first reviewed and compared with the experimental data at different heat fluxes. The results show that most of the previous correlations agree well with the experimental data under lower heat flux, but fail to predict the heat transfer coefficient well when the heat flux is as high as 33 kW/m2. The study of buoyancy effect on convective heat transfer shows that buoyancy effect significantly affects the heat transfer with the increase of heat flux, and both free and forced convections operate in the turbulence flow during supercritical CO2 cooling process. The influencing factors on heat transfer coefficient are summarized and the new correlation can be developed with the four dimensionless numbers.  相似文献   

15.
A clear understanding of two-phase flows in porous media is important for investigating CO2 geological storage. In this study, we conducted an experiment of CO2/brine flow process in porous media under sequestration conditions using X-ray CT technique. The flow properties of relative permeability, porosity heterogeneity, and CO2 saturation were observed in this experiment. The porous media was packed with glass beads having a diameter of 0.2 mm. The porosity distribution along the flow direction is heterogeneous owing to the diameter and shape of glass beads along the flow direction. There is a relationship between CO2 saturation and porosity distribution, which changes with different flow rates and fractional flows. The heterogeneity of the porous media influences the distribution of CO2; moreover, gravity, fractional flows, and flow rates influence CO2 distribution and saturation. The relative permeability curve was constructed using the steady-state method. The results agreed well with the relative permeability curve simulated using pore-network model.  相似文献   

16.
Dissolution of CO2 into brine is an important and favorable trapping mechanism for geologic storage of CO2. There are scenarios, however, where dissolved CO2 may migrate out of the storage reservoir. Under these conditions, CO2 will exsolve from solution during depressurization of the brine, leading to the formation of separate phase CO2. For example, a CO2 sequestration system with a brine-permeable caprock may be favored to allow for pressure relief in the sequestration reservoir. In this case, CO2-rich brine may be transported upwards along a pressure gradient caused by CO2 injection. Here we conduct an experimental study of CO2 exsolution to observe the behavior of exsolved gas under a wide range of depressurization. Exsolution experiments in highly permeable Berea sandstones and low permeability Mount Simon sandstones are presented. Using X-ray CT scanning, the evolution of gas phase CO2 and its spatial distribution is observed. In addition, we measure relative permeability for exsolved CO2 and water in sandstone rocks based on mass balances and continuous observation of the pressure drop across the core from 12.41 to 2.76 MPa. The results show that the minimum CO2 saturation at which the exsolved CO2 phase mobilization occurs is from 11.7 to 15.5%. Exsolved CO2 is distributed uniformly in homogeneous rock samples with no statistical correlation between porosity and CO2 saturation observed. No gravitational redistribution of exsolved CO2 was observed after depressurization, even in the high permeability core. Significant differences exist between the exsolved CO2 and water relative permeabilities, compared to relative permeabilities derived from steady-state drainage relative permeability measurements in the same cores. Specifically, very low CO2 and water relative permeabilities are measured in the exsolution experiments, even when the CO2 saturation is as high as 40%. The large relative permeability reduction in both the water and CO2 phases is hypothesized to result from the presence of disconnected gas bubbles in this two-phase flow system. This feature is also thought to be favorable for storage security after CO2 injection.  相似文献   

17.
During CO2 injection into brine aquifers-containing residual and/or dissolved CH4, three distinct regions develop: (1) a single-phase, dry-out region around the well-bore filled with pure supercritical CO2; (2) a two-phase, two-component system containing CO2 and brine; and (3) a two-phase, two-component system containing CH4, and brine. This article extends an existing analytical solution, for pressure buildup during CO2 injection into brine aquifers, by incorporating dissolved and/or residual CH4. In this way, the solution additionally accounts for partial miscibility of the CO2?CCH4?Cbrine system and the relative permeability hysteresis associated with historic imbibition of brine and current drainage due to CO2 injection and CH4 bank development. Comparison of the analytical solution results with commercial simulator, CMG-GEM, shows excellent agreement among a range of different scenarios. The presence of residual CH4 in a brine aquifer summons two competing phenomena, (1) reduction in relative permeability (phase interference), which increases pressure buildup by reducing total mobility, and (2) increase in bulk compressibility which decreases pressure buildup of the system. If initial CH4 is dissolved (no free CH4), these effects are not as important as they are in the residual gas scenario. Relative permeability hysteresis increased the CH4 bank length (compared to non-hysteretic relative permeability), which led to further reduction in pressure buildup. The nature of relative permeability functions controls whether residual CH4 is beneficial or disadvantageous to CO2 storage capacity and injectivity in a candid brine aquifer.  相似文献   

18.
On the basis of observations at four enhanced coalbed methane (ECBM)/CO2 sequestration pilots, a laboratory-scale study was conducted to understand the flow behavior of coal in a methane/CO2 environment. Sorption-induced volumetric strain was first measured by flooding fresh coal samples with adsorptive gases (methane and CO2). In order to replicate the CO2–ECBM process, CO2 was then injected into a methane-saturated core to measure the incremental “swelling.” As a separate effort, the permeability of a coal core, held under triaxial stress, was measured using methane. This was followed by CO2 flooding to replace the methane. In order to best replicate the conditions in situ, the core was held under uniaxial strain, that is, no horizontal strain was permitted during CO2 flooding. Instead, the horizontal stress was adjusted to ensure zero strain. The results showed that the relative strain ratio for CO2/methane was between 2 and 3.5. The measured volumetric strains were also fitted using a Langmuir-type model, thus enabling calculation of the strain at any gas pressure and using the analytical permeability models. For permeability work, effort was made to increase the horizontal stress to achieve the desired zero horizontal strain condition expected under in situ condition, but this became impossible because the “excess” stress required to maintain this condition was very large, resulting in sample failure. Finally, when CO2 was introduced and horizontal strain was permitted, permeability reduction was an order of magnitude greater, suggesting that the “excess” stress would have reduced it significantly further. The positive finding of the work was that the “excess” stresses associated with injection of CO2 are large. The excess stresses generated might be sufficient to cause microfracturing and increased permeability, and improved injectivity. Also, there might be a weakening effect resulting from repeated CO2 injection, as has been found to be the case with thermal cycling of rocks.  相似文献   

19.
The relative permeability of carbon dioxide (CO2) to brine influences the injectivity and plume migration when CO2 is injected in a reservoir for CO2 storage or enhanced oil recovery (EOR) purposes. It is common practice to determine the relative permeability of a fluid by means of laboratory measurements. Two principal approaches are used to obtain a relative permeability data: steady state and unsteady state. Although CO2 has been employed in enhanced oil recovery, not much data can be found in the open literature. The few studies available report wide ranges for CO2 relative permeability in typical sedimentary rocks such as Berea sandstone, dolomite, and others. The experimental setups vary for each study, employing steady and unsteady state approaches, different experimental parameters such as temperature, pressure, rock type, etc. and various interpretation methods. Hence, it is inherently difficult to compare the data and determine the origin of differences. It is evident that more experiments are needed to close this knowledge gap on relative permeability. This article concludes that standards for lab measurements need to be defined a. to establish a reliable CO2-brine relative permeability measurement method that can be repeated under the same conditions in any lab and b. to enable comparison of the data to accurately predict the well injection and fluid migration behavior in the reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号