首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The propagation of elliptically polarised inhomogeneous plane waves in a linearly viscous fluid is considered. The angular frequency and the slowness vector are both assumed to be complex. Use is made throughout of Gibbs bivectors (complex vectors). It is seen that there are two types of solutions—the zero pressure solution, for which the increment in pressure due to the propagation of the wave is zero, and a universal solution which is independent of the viscosity.Since the waves are attenuated in time, the usual mean energy flux vector is not a suitable way of measuring energy flux. A new energy flux vector, appropriate to these waves is defined, and results relating it with energy dissipation and energy density are obtained. These results are related to a result derived directly from the balance of energy equation.  相似文献   

2.
In the present study, inhomogeneous plane harmonic waves propagation in dissipative partially saturated soils are investigated. The analytical model for the dissipative partially saturated soils is solved in terms of Christoffel equations. These Christoffel equations yields the existence of four wave (three longitudinal and one shear) modes in partially saturated soils. Christoffel equations are further solved to determine the complex velocities and polarizations of four wave modes. Inhomogeneous propagation is considered through a particular specification of complex slowness vector. A finite non-dimensional inhomogeneity parameter is considered to represent the inhomogeneous nature of these four waves. Impact of tortuosity parameter on the movement of pore fluids is considered. Hence, the considered model is capable of describing the wave behavior at high as well as mid and low frequencies. Numerical example is considered to study the effects of inhomogeneity parameter, saturation of water, porosity, permeability, viscosity of fluid phase and wave frequency on the velocity and attenuation of four waves. It is observed that all the waves are dispersive in nature (i.e., frequency dependent).  相似文献   

3.
The Christoffel equation is derived for the propagation of plane harmonic waves in a generalized thermoelastic anisotropic (GTA) medium. Solving this equation for velocities implies the propagation of four attenuating waves in the medium. The same Christoffel equation is solved into a polynomial equation of degree eight. The roots of this equation define the vertical slownesses of the eight attenuating waves existing at a boundary of the medium. Incidence of inhomogeneous waves is considered at the boundary of the medium. A finite non-dimensional parameter defines the inhomogeneity of incident wave and is used to calculate its (complex) slowness vector. The reflected attenuating waves are identified with the values of vertical slowness. Procedure is explained to calculate the slowness vectors of the waves reflected from the boundary of the medium. The slowness vectors are used, further, to calculate the phase velocities, phase directions, directions and amounts of attenuations of the reflected waves. Numerical examples are considered to analyze the variations of these propagation characteristics with the inhomogeneity and propagation direction of incident wave. Incidence of each of the four types of waves is considered. Numerical example is also considered to study the propagation and attenuation of inhomogeneous waves in the unbounded medium.  相似文献   

4.
The propagation, reflection, and transmission of SH waves in slightly compressible, finitely deformed elastic media are considered in this paper. The dispersion relation for SH-wave propagation in slightly compressible, finitely deformed layer overlying a slightly compressible, finitely deformed half-space is derived. The present paper also deals with the reflection and refraction (transmission) phenomena due to the SH wave incident at the plane interface between two distinct slightly compressible, finitely deformed elastic media. The closed form expressions for the amplitude ratios of reflection and refraction coefficients of the reflected and refracted SH waves are obtained from suitable boundary conditions. For the numerical discussions, we consider the Neo-Hookean form of a strain energy function. The phase speed curves, the variations of reflection, and transmission coefficients with the angle of incidence, and the plots of the slowness sections are presented by means of graphs.  相似文献   

5.
This study discusses wave propagation in perhaps the most general model of a poroelastic medium. The medium is considered as a viscoelastic, anisotropic and porous solid frame such that its pores of anisotropic permeability are filled with a viscous fluid. The anisotropy considered is of general type, and the attenuating waves in the medium are treated as the inhomogeneous waves. The complex slowness vector is resolved to define the phase velocity, homogeneous attenuation, inhomogeneous attenuation, and angle of attenuation for each of the four attenuating waves in the medium. A non-dimensional parameter measures the deviation of an inhomogeneous wave from its homogeneous version. An numerical model of a North-Sea sandstone is used to analyze the effects of the propagation direction, inhomogeneity parameter, frequency regime, anisotropy symmetry, anelasticity of the frame, and viscosity of the pore-fluid on the propagation characteristics of waves in such a medium.  相似文献   

6.
The mixture theory is employed to the analysis of surface-wave propagation in a porous medium saturated by two compressible and viscous fluids (liquid and gas). A linear isothermal dynamic model is implemented which takes into account the interaction between the pore fluids and the solid phase of the porous material through viscous dissipation. In such unsaturated cases, the dispersion equations of Rayleigh and Love waves are derived respectively. Two situations for the Love waves are discussed in detail: (a) an elastic layer lying over an unsaturated porous half-space and (b) an unsaturated porous layer lying over an elastic half-space. The wave analysis indicates that, to the three compressional waves discovered in the unsaturated porous medium, there also correspond three Rayleigh wave modes (R1, R2, and R3 waves) propagating along its free surface. The numerical results demonstrate a significant dependence of wave velocities and attenuation coefficients of the Rayleigh and Love waves on the saturation degree, excitation frequency and intrinsic permeability. The cut-off frequency of the high order mode of Love waves is also found to be dependent on the saturation degree.  相似文献   

7.
The slowness surface of a compressible elastic material has three sheets whilst that of an incompressible elastic material has only two sheets. The explanation for this qualitative difference is found to be that as the material approaches an incompressible limit the inmost sheet becomes a small sphere collapsing to the origin whilst the other two sheets tend to the two sheets of the limiting incompressible solid. The theory of nearly incompressible materials is developed here because of its important applications to rubberlike solids. Some results on the wave polarisations and on the convexity of the slowness surfaces are also given.  相似文献   

8.
为了改进基于不可压缩流场的声类比法的气动声数值预测方法,首先要明确扰动在可压缩和不可压缩流体媒介中的传播特性. 推导了震荡小球在不可压缩流体中产生的小扰动的理论解,分析其速度场与压力场的特点,并与可压缩情况的解进行比较. 结果显示,速度场中包含传播速度为无穷大和有限值的分量;而压力场只有传播速度为无穷大的分量. 当流体黏性趋于零或小球震荡频率趋于无穷大时,其流场与经典声学中震荡小球声辐射问题的近场声一致,这表明震荡小球产生的近场扰动为不可压缩流场,即伪声.  相似文献   

9.
The dispersive behavior of finite-amplitude time-harmonic Love waves propagating in a pre-stressed compressible elastic half-space overlaid with two compressible elastic surface layers of finite thickness is investigated. The half-space and layers are made of different pre-stressed compressible neo-Hookean materials. The dispersion relation which relates wave speed and wavenumber is obtained in explicit form. Results for the energy density and energy flux of the waves are also presented. The special case where the interfaces between the layers and the half-space are principal planes of the left Cauchy–Green deformation tensor is also investigated. Numerical results are presented showing the variation of the Love wave speed with the pre-stress and the propagation angle.  相似文献   

10.
An investigation is conducted of propagation of surface waves in a porous medium consisting of a microscopically incompressible solid skeleton in which a microscopically incompressible liquid flows within the interconnected pores, and particularly the case where the solid skeleton deforms linear elastically. The frequency equations of Rayleigh- and Love-type waves are derived relating the dependence of wave numbers, being complex quantities, on frequency, as a result those waves are dispersive as well as inhomogeneous. Nevertheless, the amplitudes of both surface waves attenuate along the surface of the porous medium, whereas they decay exponentially receding from the surface of the medium.  相似文献   

11.
Wave propagation in porous piezoelectric material (PPM), having crystal symmetry 6 mm, is studied analytically. Christoffel equation is derived for the propagation of plane harmonic waves in such a medium. The roots of this equation give four complex wave velocities which can propagate in such materials. The phase velocities of propagation and the attenuation quality factors of all these waves are described in terms of complex wave velocities. Phase velocities and attenuation of the waves in PPM depend on the phase direction. Numerical results are computed for the PPM BaTiO3. The variation of phase velocity and attenuation quality factor with phase direction, porosity and the wave frequency is studied. The effects of anisotropy and piezoelectric coupling are also studied. The phase velocities of two quasi dilatational waves and one quasi shear waves get affected due to piezoelectric coupling while that of type 2 quasi shear wave remain unaffected. The phase velocities of all the four waves show non-dispersive behavior after certain critical high frequency. The phase velocity of all waves decreases with porosity while attenuation of respective waves increases with porosity of the medium. The characteristic curves, including slowness curves, velocity curves, and the attenuation curves, are also studied in this paper.  相似文献   

12.
Interfacial symmetric solitary waves propagating horizontally in a three-layer fluid with constant density of each layer are investigated. A fully nonlinear numerical scheme based on integral equations is presented. The method allows for steep and overhanging waves. Equations for three-layer conjugate flows and integral properties like mass, momentum and kinetic energy are derived in parallel. In three-layer fluids the wave amplitude becomes larger than in corresponding two-layer fluids where the thickness of a pycnocline is neglected, while the opposite is true for the propagation velocity. Waves of limiting form are particularly investigated. Extreme overhanging solitary waves of elevation are found in three-layer fluids with large density differences and a thick upper layer. Surprisingly we find that the limiting waves of depression are always broad and flat, satisfying the conjugate flow equations. Mode-two waves, obtained with a periodic version of the numerical method, are accompanied by a train of small mode-one waves. Large amplitude mode-two waves, obtained with the full method, are close to one of the conjugate flow solutions.  相似文献   

13.
This paper derives a variable coefficient, multidimensional Burgers equation which models the propagation of a nonlinear sound wave through an incompressible background flow. The equation is derived from the compressible Euler equations by the combination of a weakly nonlinear acoustics expansion for the sound wave and an incompressible expansion for the background flow. The main effect of the incompressible flow on the sound wave is the advection of the sound wave by the transverse velocity component of the flow.  相似文献   

14.
An experimental study of the propagation of high-frequency acoustic waves through grid-generated turbulence by means of an ultrasound technique is discussed. Experimental data were obtained for ultrasonic wave propagation downstream of heated and non-heated grids in a wind tunnel. A semi-analytical acoustic propagation model that allows the determination of the spatial correlation functions of the flow field is developed based on the classical flowmeter equation and the statistics of the travel time of acoustic waves traveling through the kinematic and thermal turbulence. The basic flowmeter equation is reconsidered in order to take into account sound speed fluctuations and turbulent velocity fluctuations. It allows deriving an integral equation that relates the correlation functions of travel time, sound speed fluctuations and turbulent velocity fluctuations. Experimentally measured travel time statistics of data with and without grid heating are approximated by an exponential function and used to analytically solve the integral equation. The reconstructed correlation functions of the turbulent velocity and sound speed fluctuations are presented. The power spectral density of the turbulent velocity and sound speed fluctuations are calculated.  相似文献   

15.
16.
In [1] a system of equations was obtained for the case of a potential motion of an ideal incompressible homogeneous fluid; the system described the propagation of a train of waves in a medium with slowly varying properties, the motion in the train being characterized by a wave vector and a frequency. A solitary wave is a particular case of a wave train in which the length of the waves in the train is large. In [2, 3] a quasilinear system of partial differential equations was obtained which described two-dimensional and three-dimensional motion of a solitary wave in a layer of liquid of variable depth. It follows from this system that if the unperturbed state of the liquid is the quiescent state, then some integral quantity (the average wave energy [2–4]), referred to an element of the front, is preserved during the course of the motion. This fact is also valid for a train of waves, and can be demonstrated to be so upon applying the formalism of [1] to a Lagrangian similar to that used in [2]. In the present paper we obtain, for the case of a layer of liquid of constant depth, a solution in the form of simple waves for a system, equivalent to the system obtained in [3], describing the motion of a solitary wave and also the motion of a train of waves. We show that it is possible to have tilting of simple waves, leading in the case considered here to the formation of corner points on the wave front. We consider several examples of initial perturbations, and we obtain their asymptotics as t→∞. We make our presentation for the solitary wave case; however, in view of our statement above, the results automatically carry over to the case of a train of waves.  相似文献   

17.
This article is the second part of a review of the dynamics of rigid and elastic bodies in a compressible viscous liquid in a linearized formulation. The following processes are investigated: the forced harmonic vibrations of rigid bodies in moving and resting compressible viscous liquids, the nonstationary motion of rigid bodies in a compressible viscous liquid at rest, the movement of rigid bodies in a resting compressible viscous liquid under the action of radiation forces that are due to the interaction with propagating acoustic harmonic waves, the propagation of harmonic waves in thin-walled cylindrical elastic shells containing a compressible viscous liquid, and the propagation of harmonic waves in hydroelastic systems consisting of a resting compressible viscous liquid and elastic compressible or incompressible bodies with initial stresses. Publications concerning the above problems are analyzed. S.P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 36, No. 3, pp. 3–30, March, 2000.  相似文献   

18.
In the second-order approximation in the dimensionless wave amplitude, the problem of nonlinear periodic capillary-gravity wave motion of the uniformly charged interface between two immiscible ideal incompressible fluids, the lower of which is perfectly electroconductive and the upper, dielectric, moves translationally at a constant velocity parallel to the interface, is solved analytically. It is shown that on the uniformly charged surface of an electroconductive ideal incompressible fluid the positions of internal nonlinear degenerate resonances depend of the medium density ratio but are independent of the upper medium velocity and the surface charge density on the interface. All resonances are realized at densities of the upper medium smaller than the density of the lower medium. In the region of Rayleigh-Taylor instability with respect to density there is no resonant wave interaction.  相似文献   

19.
In many flows the turbulence is weakly compressible even at large Mach number. For example, in a compressible boundary layer Ma<5, the differences relative to an incompressible boundary layer understood as being caused by density variations that accompany variations temperature across the layer. Turbulent fluctuations in a boundary layer are therefore expected to be dominated by the effects nonconstant temperature, and low Mach number theories in which fluctuations are not dominant should be applicable to the fluctuating field. However, the analysis of compressible boundary layer DNS data reveals presence of significant acoustic fluctuations. To distinguish acoustic and thermal effects, a numerical decomposition procedure compressible boundary layer fluctuations is applied to determine the and nonacoustic fluctuations. Except for very near the wall, where decomposition procedure is not valid, it is found that the fluctuations are only weakly coupled to the acoustic fluctuations at numbers as high as 6. Received 13 March 2000 and accepted 21 May 2001  相似文献   

20.
We investigate wave propagation in elastic porous media which are saturated by incompressible viscous Newtonian fluids when the porous media are in rotation with respect to a Galilean frame. The model is obtained by upscaling the flow at the pore scale. We use the method of multiple scale expansions which gives rigorously the macroscopic behaviour without any prerequisite on the form of the macroscopic equations. For Kibel numbers A A(1), the acoustic filtration law resembles a Darcys law, but with a conductivity which depends on the wave frequency and on the angular velocity. The bulk momentum balance shows new inertial terms which account for the convective and Coriolis accelerations. Three dispersive waves are pointed out. An investigation in the inertial flow regime shows that the two pseudo-dilatational waves have a cut-off frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号