首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new analytical method is presented to study the axisymmetric Biot's consolidation of a finite soil layer. Starting from the governing equations of axisymmetric Blot's consolidation, and based on the property of Laplace transform, the relation of basic variables for a point of a finite soil layer is established between the ground surface (z= 0) and the depth z in the Laplace and Hankel transform domains. Combined with the boundary conditions of the finite soil layer, the analytical solution of any point in the transform domain can be obtained. The actual solution in the physical domain can be obtained by inverse Laplace and Hankel transforms. A numerical analysis for the axisymmetric consolidation of a finite soil layer is carried out.  相似文献   

2.
Plane strain consolidation of soil layer with anisotropic permeability   总被引:1,自引:0,他引:1  
This paper presents an alternative analytical technique to study a plane strain consolidation of a poroelastic soil by taking into account the anisotropy of permeability. From the governing equations of a saturated poroelastic soil, the relationship of basic variables for a point of a soil layer is established between the ground surface (z=0) and the depth z in the Laplace-Fourier transform domain. Combined with the boundary conditions, an exact solution is derived for plane strain Biot's consolidation of a finite soil layer with anisotropic permeability in the transform domain. Numerical inversions of the Laplace transform and the Fourier transform are adopted to obtain the actual solution in the physical domain. Numerical results of plane strain Biot's consolidation for a single soil layer show that the anisotropic of permeability has a great influence on the consolidation behavior of the soils.  相似文献   

3.
This paper presents an analytical solution of the one-dimensional consolidation in unsaturated soil with a finite thickness under vertical loading and confinements in the lateral directions. The boundary contains the top surface permeable to water and air and the bottom impermeable to water and air. The analytical solution is for Fredlund's one-dimensional consolidation equation in unsaturated soils. The transfer relationship between the state vectors at top surface and any depth is obtained by using the Laplace transform and Cayley-Hamilton mathematical methods to the governing equations of water and air, Darcy's law and Fick's law. Excess pore-air pressure, excess pore-water pressure and settlement in the Laplace-transformed domain are obtained by using the Laplace transform with the initial conditions and boundary conditions. By performing inverse Laplace transforms, the analytical solutions are obtained in the time domain. A typical example illustrates the consolidation characteristics of unsaturated soil from an- alytical results. Finally, comparisons between the analytical solutions and results of the finite difference method indicate that the analytical solution is correct.  相似文献   

4.
In this paper, a series of semi-analytical solutions to one-dimensional consolidation in unsaturated soils are obtained. The air governing equation by Fredlund for unsaturated soils consolidation is simplified. By applying the Laplace transform and the Cayley-Hamilton theorem to the simplified governing equations of water and air, Darcy's law, and Fick's law, the transfer function between the state vectors at top and at any depth is then constructed. Finally, by the boundary conditions, the excess pore-water pressure, the excess pore-air pressure, and the soil settlement are obtained under several kinds of boundary conditions with the large-area uniform instantaneous loading. By the Crump method, the inverse Laplace transform is performed, and the semi-analytical solutions to the excess pore-water pressure, the excess pore-air pressure, and the soils settlement are obtained in the time domain. In the case of one surface which is permeable to air and water, comparisons between the semi-analytical solutions and the analytical solutions indicate that the semi-analytical solutions are correct. In the case of one surface which is permeable to air but impermeable to water, comparisons between the semi-analytical solutions and the results of the finite difference method are made, indicating that the semi-analytical solution is also correct.  相似文献   

5.
Frequency domain fundamental solutions for a poroelastic half-space   总被引:1,自引:0,他引:1  
In frequency domain, the fundamental solutions for a poroelastic half-space are re-derived in the context of Biot's theory. Based on Biot's theory, the governing field equations for the dynamic poroelasicity are established in terms of solid displacement and pore pressure. A method of potentials in cylindrical coordinate system is proposed to decouple the homogeneous Biot's wave equations into four scalar Helmholtz equations, and the general solutions to these scalar wave equations are obtained. After that, spectral Green's functions for a poroelastic full-space are found through a decomposition of solid displacement, pore pressure, and body force fields. Mirror-image technique is then applied to construct the half-space fundamental solutions.Finally, transient responses of the half-space to buried point forces are examined.  相似文献   

6.
Based on the thermodynamics of irreversible processes, the mass conservation equation and heat energy balance equation are established. The governing equations of thermal consolidation for homogeneous isotropic materials are presented, accounting for the coupling effects of the temperature, stress and displacement fields. The case of a saturated medium with a long cylindrical cavity subjected to a variable thermal loading and a variable hydrostatic pressure (or a variable radial water flux) with time is considered. The analytical solutions are derived in the Laplace transform space. Then, the time domain solutions are obtained by a numerical inversion scheme. The results of a typical example indicate that thermodynamically coupled effects have considerable influences on thermal responses.  相似文献   

7.
When dynamic force is applied to a saturated porous soil, drainage is common. In this paper, the saturated porous soil with a two-phase saturated medium is simulated, and Lamb's integral formulas with drainage and stress formulas for a two-phase saturated medium are given based on Biot's equation and Betti's theorem (the reciprocal theorem). According to the basic solution to Biot's equation, Green's function Gij and three terms of Green's function G4i, Gi4, and G44 of a two-phase saturated medium subject to a concentrated force on a spherical coordinate are presented. The displacement field with drainage, the magnitude of drainage, and the pore pressure of the center explosion source are obtained in computation. The results of the classical Sharpe's solutions and the solutions of the two-phase saturated medium that decays to a single-phase medium are compared. Good agreement is observed.  相似文献   

8.
Unsaturated soil is a three-phase media and is composed of soil grain, water and gas. In this paper, the consolidation problem of unsaturated soil is investigated based on the theory of mixture. A theoretical formula of effective stress on anisotropic porous media and unsaturated soil is derived. The principle of effective stress and the principle of Curie symmetry are taken as two fundamental constitutive principles of unsaturated soil. A mathematical model of consolidation of unsaturated soil is proposed, which consists of 25 partial differenfial equations with 25 unknowns. With the help of increament linearizing method, the model is reduced to 5 governing equations with 5 unknowns, i.e., the three displacement components of solid phase, the pore water pressure and the pore gas pressure. 7 material parameters are involved in the model and all of them can he measured using soil tests. It is convenient to use the model to engineering practice. The well known Biot’s theory is a special case of the model.  相似文献   

9.
The present paper uses the mathematics model for consolidation of unsaturatedsoil developed in ref.[1]to solve boundary value problems.The analytical solutionsfor one-dimensional consolidation problem are gained by making use of Laplacetransform and finite Fourier transform.The displacement and the pore water pressureas well as the pore gas pressure are found from governing equations simultaneously.The theoretical formulae of coefficient and degree of consolidation are also given inthe paper.With the help of the method of Galerkin Weighted Residuals,the finiteelement equations for two-dimensional consolidation problem are derived.A FORTRANprogram named CSU8 using8-node isoparameter element is designed.A plane strainconsolidation problem is solved using the program,and some distinguishing features onconsolidation of unsaturated soil and certain peculiarities on numerical analysis arerevealed.These achievements make it convenient to apply the theory proposed by theauthor in engineering practice.  相似文献   

10.
CONSOLIDATION HEORY OF UNSATURATED SOIL BASED ON THE THEORY OF MIXTURE(Ⅰ)   总被引:1,自引:1,他引:1  
Unsaturated soil is a three-phase media and is composed of soil grain,water andgas.In this paper,the consolidation problem of unsaturated soil is investigated basedon the theory of mixture.A theoretical formula of effective stress on anisotropicporous media and unsaturated soil is derived.The principle of effective stress and theprinciple of Curie symmetry are taken as two fundamental constitutive principles ofunsaturated soil.A mathematical model of consolidation of unsaturated soil isproposed,which consists of25 partial differenfial equations with25 unknowns.Withthe help of increament linearizing method,the model is reduced to5 governingequations with5 unknowns,i.e.,the three displacement components of solid phase,thepore water pressure and the pore gas pressure.7 material parameters are involved inthe model and all of them can be measured using soil tests.It is convenient to use themodel to engineering practice.The well known Biot’s theory is a special case of themodel.  相似文献   

11.
This paper analyzes a coupled thermo-hydro-mechanical behavior of unsaturated soils based on the theory of mixtures. Unsaturated soil is considered as a mixture composed of soil skeleton, liquid water, vapor, dry air, and dissolved air. In addition to the mass and momentum conservation equations of each component and the energy conservation equation of the mixture, the system is closed using other 37 constitutive (or restriction) equations. As the change in water chemical potential is identical to the change in vapor chemical potential, a thermodynamic restriction relationship for the phase transition between pore water and pore vapor is formulated, in which the impact of the change in gas pressure on the phase transition is taken into account. Six final govern- ing equations are given in incremental form in terms of six primary variables, i.e., three displacement components of soil skeleton, water pressure, gas pressure, and temperature. The processes involved in the coupled model include thermal expansions of soil skeleton and soil particle, Soret effect, phase transition between water and vapor, air dissolution in pore water, and deformation of soil skeleton.  相似文献   

12.
In this paper, an analytical solution for the dynamic response of a double-layered subgrade with rock substratum to a moving point load is derived. The subgrade profile is divided into two layers. The upper layer is modeled by an elastic medium and the lower layer by a fully saturated poroelastic medium governed by Biot’s theory. In the meanwhile, the subgrade is resting on the rock substratum. The analytical solutions for stress, displacement and pore pressure are derived by using the Fourier transform. Numerical results obtained by using the inverse fast Fourier transform (IFFT) are used to analyze the influence of the moving load velocity, the thickness of an elastic medium layer and a fully saturated poroelastic medium layer on the dynamic response.  相似文献   

13.
This paper deals with the determination of the thermo-elastic displacements and stresses in a multi-layered body set up in different layers of different thickness having different elastic properties due to the application of heat and a concentrated load in the uppermost surface of the medium. Each layer is assumed to be made of homogeneous and isotropic elastic material. The relevant displacement components for each layer are taken to be axisymmetric about a line, which is perpendicular to the plane surfaces of all layers. The stress function for each layer, therefore, satisfies a single equation in absence of any body forces. The equation is then solved by integral transform technique. Analytical expressions for thermo-elastic displacements and stresses in the underlying mass and the corresponding numerical codes are constructed for any number of layers. However, the numerical comparison is made for three and four layers.  相似文献   

14.
Focused on the sensitivity to climate change and the special mechanical characteristics of undisturbed expansive soil, an elastc-plastic damage constitutive model was proposed based on the mechanics of unsaturated soil and the mechanics of damage. Undisturbed expansive soil was considered as a compound of non-damaged part and damaged part. The behavior of the non-damaged part was described using non-linear constitutive model of unsaturated soil. The property of the damaged part was described using a damage evolution equation and two yield surfaces, i.e., loading yield (LY) and shear yield (SY). Furthermore, a consolidation model for unsaturated undisturbed expansive soil was established and a FEM program named UESEPDC was designed. Numerical analysis on solid-liquid-gas tri-phases and multi-field couple problem was conducted for four stages and fields of stress, displacement, pore water pressure, pore air pressure, water content, suction, and the damage region as well as plastic region in an expansive soil slope were obtained.  相似文献   

15.
Law of nonlinear flow in saturated clays and radial consolidation   总被引:9,自引:0,他引:9  
It was derived that micro-scale amount level of average pore radius of clay changed from 0.01 to 0.1 micron by an equivalent concept of flow in porous media.There is good agreement between the derived results and test ones.Results of experiments show that flow in micro-scale pore of saturated clays follows law of nonlinear flow.Theoretical analyses demonstrate that an interaction of solid-liquid interfaces varies inversely with permeability or porous radius.The interaction is an important reason why nonlinear flow in saturated clays occurs.An exact mathematical model was presented for nonlinear flow in micro-scaie pore of saturated clays.Dimension and physical meanings of parameters of it are definite.A new law of nonlinear flow in saturated clays was established.It can describe characteristics of flow curve of the whole process of the nonlinear flow from low hydraulic gradient to high one.Darcy law is a special case of the new law.A math- ematical model was presented for consolidation of nonlinear flow in radius direction in saturated clays with constant rate based on the new law of nonlinear flow.Equations of average mass conservation and moving boundary,and formula of excess pore pressure distribution and average degree of consolidation for nonlinear flow in saturated clay were derived by using an idea of viscous boundary layer,a method of steady state in stead of transient state and a method of integral of an equation.Laws of excess pore pressure distribution and changes of average degree of consolidation with time were obtained.Re- suits show that velocity of moving boundary decreases because of the nonlinear flow in saturated clay.The results can provide geology engineering and geotechnical engineering of saturated clay with new scientific bases.Calculations of average degree of consolidation of the Darcy flow are a special case of that of the nonlinear flow.  相似文献   

16.
Starting with governing equations of a saturated soil with anisotropic permeability and based on multiple integral transforms,an analytical layer-element equation is established explicitly in the Laplace-Fourier transformed domain.A global matrix of layered soil can be obtained by assembling a set of analytical layer-elements,which is further solved in the transformed domain by considering boundary conditions.The numerical inversion of Laplace-Fourier transform is employed to acquire the actual solution.Numerical analysis for 3-D consolidation with anisotropic permeability of a layered soil system is presented,and the influence of anisotropy of permeability on the consolidation behavior is discussed.  相似文献   

17.
General exact solutions in terms of wavelet expansion are obtained for multi- term time-fractional diffusion-wave equations with Robin type boundary conditions. By proposing a new method of integral transform for solving boundary value problems, such fractional partial differential equations are converted into time-fractional ordinary differ- ential equations, which are further reduced to algebraic equations by using the Laplace transform. Then, with a wavelet-based exact formula of Laplace inversion, the resulting exact solutions in the Laplace transform domain are reversed to the time-space domain. Three examples of wave-diffusion problems are given to validate the proposed analytical method.  相似文献   

18.
The present paper is concerned with the investigation of disturbances in'a homogeneous, isotropic elastic medium with generalized thermoelastic diffusion, when a moving source is acting along one of the co-ordinate axis on the boundary of the medium. Eigen value approach is applied to study the disturbance in Laplace-Fourier transform domain for a two dimensional problem. The analytical expressions for displacement components, stresses, temperature field, concentration and chemical potential are obtained in the physical domain by using a numerical technique for the inversion of Laplace transform based on Fourier expansion techniques. These expressions are calculated numerically for a copper like material and depicted graphically. As special cases, the results in generalized thermoelastic and elastic media are obtained. Effect of presence of diffusion is analyzed theoretically and numerically.  相似文献   

19.
In this paper, the effect of angle inclination at the interface of a viscous fluid and thermoelastic micropolar honeycomb solid due to inclined load is investigated. The inclined load is assumed to be a linear combination of normal load and tangential load. Laplace transform with respect to time variable and Fourier transform with respect to space variable are applied to solve the problem. Expressions of stresses, temperature distribution, and pressures in the transformed domain are obtained by introducing potential functions. The numerical inversion technique is used to obtain the solution in the physical domain. The frequency domain expressions for steady state are also obtained with appropriate change of variables. Graphic representations due to the response of different sources and changes of angle inclination are shown. Some particular cases are also discussed.  相似文献   

20.
Based on the finite deformation theory of the continuum and poroelastic theory, the aeoustoelastic theory for fluid-saturated porous media (FSPM) in natural and initial coordi- nates is developed to investigate the influence of effective stresses and fluid pore pressure on wave velocities. Firstly, the assumption of a small dynamic motion superimposed on a largely static pre- deformation of the FSPM yields natural, initial, and final configurations, whose displacements, strains, and stresses of the solid-skeleton and the fluid in an FSPM particle could be described in natural and initial coordinates, respectively. Secondly, the subtraction of initial-state equations of equilibrium from the final-state equations of motion and the introduction of non-linear constitu- rive relations of the FSPM lead to equations of motion for the small dynamic motion. Thirdly, the consideration of homogeneous pre-deformation and the plane harmonic form of the small dynamic motion gives an acoustoelastic equation, which provides analytical formulations for the relation of the fast longitudinal wave, the fast shear wave, the slow shear wave, and the slow longitudinal wave with solid-skeleton stresses and fluid pore-pressure. Lastly, an isotropic FSPM under the close-pore jacketed condition, open-pore jacketed condition, traditional unjacketed condition, and triaxial condition is taken as an example to discuss the velocities of the fast and slow shear waves propagating along the direction of one of the initial principal solid-skeleton strains. The detailed discussion shows that the wave velocities of the FSPM are usually influenced by the effective stresses and the fluid pore pressure. The fluid pore-pressure has little effect on the wave velocities of the FSPM only when the components of the applied initial principal solid-skeleton stresses or strains are equal, which is consistent with the previous experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号