首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为了研究表面织构对聚四氟乙烯(PTFE)复合材料摩擦磨损性能的影响规律及其作用机理,采用BBD响应面法对试验进行设计与分析,利用LSR-2M往复摩擦试验机测试了复合材料的摩擦学性能,建立了织构参数与摩擦系数和体积磨损率之间的二次回归模型,研究了槽宽、间距和角度参数及其交互作用对复合材料摩擦学性能的影响. 结果表明:二次回归模型显著,拟合精度分别为82.9%和83.2%,预测出槽宽323.2 μm、间距295.4 μm、角度88.7°时摩擦系数存在最小值0.147,槽宽331.1 μm、间距307.6 μm、角度87.6°时体积磨损率存在最大值8.11×10?5 mm3/(Nm);织构增大了初始摩擦系数和体积磨损率,但有利于储存磨屑,在接触应力作用下磨屑中的纳米粒子与槽底及侧面的粗糙峰形成了机械互锁,提高了磨屑的附着力,促进了转移膜的生成.   相似文献   

2.
采用浇铸法,利用超声分散制备了多壁碳纳米管(MWNTs)/环氧树脂(EP)纳米复合材料,研究了MWNTs的添加量及分散程度对复合材料表面形貌和摩擦磨损性能的影响,并探讨了影响MWNTs/EP复合材料摩擦磨损性能的因素.结果表明:随着MWNTs加入量的提高(1%~4%),复合材料的摩擦系数和磨损率均呈现降低趋势,摩擦系数由0.60降到0.22,磨损率由1.11×10-4mg/(N·m)降为2.22×10-5mg/(N·m);在MWNTs添加量(1%)相同的情况下,MWNTs分散程度高的复合材料的摩擦性能更好.纯环氧树脂与45#钢对摩时发生粘着磨损和疲劳剥落,而由于MWNTs的增强和自润滑作用,MWNTs/EP复合材料的粘着磨损和疲劳剥落显著减轻.  相似文献   

3.
溅射二硫化钼膜在不同润滑条件下的摩擦学性能分析   总被引:1,自引:1,他引:0  
通过MoS2膜/钢、钢/钢摩擦副分别在干摩擦、油和脂润滑条件下的球-盘式摩擦学试验,对比分析了润滑条件、载荷、滑动速度对MoS2膜摩擦系数的影响.利用原子力显微镜(AFM)对膜层磨损形貌进行表征,研究润滑条件对膜层磨损寿命的影响.结果表明:在4122仪表油和FAG脂润滑下,MoS2膜在零速启动、中低速情况下的动、静摩擦系数均比MoS2干膜和钢/钢摩擦副的要低;固-液复合润滑时的MoS2膜的耐磨性均比干膜摩擦时有所降低,MoS2干膜的磨损率约为8.1×10-7mm3/(N.m),在油和脂润滑时其磨损率分别约为2.4×10-5mm3/(N.m)和5.5×10-6mm3/(N.m).  相似文献   

4.
Ti3SiC2/Inconel718摩擦副的高温摩擦学性能   总被引:1,自引:0,他引:1  
本文考察了Ti3SiC2-Inconel 718摩擦副从室温到800 ℃范围内的摩擦磨损性能.结果表明:温度的升高有利于改善Ti3 SiC2-Inconel 718摩擦副的摩擦磨损性能,在800℃时,其摩擦磨损性能优异.随着温度的升高,摩擦系数从室温的0.71降至800℃时的0.37,Ti3SiC2的磨损率从4×10-3 mm3/(N·m)降至10-5mm3/(N·m)以下.高温塑性变形和摩擦氧化物层的形成导致摩擦系数的降低,300℃以下,晶粒的断裂、拔出与脱落以及材料向合金的转移造成了Ti3SiC2高的磨损率,从400℃至800℃,Ti3 SiC2晶粒的断裂与脱落受到明显抑制,其磨损率显著降低.  相似文献   

5.
聚合物复合材料由于其自润滑特性和化学稳定性高等优势,在汽车和装备领域运动机构的摩擦学设计中发挥着越来越重要的作用.本研究系统考察了氟化钙(CaF2)颗粒的加入对聚四氟乙烯(PTFE)和碳纤维(CF)增强PTFE材料摩擦学性能的影响规律.研究发现,在PTFE中添加CaF2颗粒可明显改善基体材料的抗磨性能.尤其,与分别填充有CaF2陶瓷颗粒或CF的PTFE材料相比,同时填充CaF2和CF的PTFE多元复合材料的耐磨性能分别提高了11.1和2.47倍. CF与CaF2表现出显著的协同抗磨作用,同时该多元复合材料表现出极低的特征磨损率[8.9×10-7 mm3/(N·m)]和优异的自润滑性能.通过多种表征手段深入分析了金属对偶表面生长转移膜的微观结构以及界面的物理化学反应和产物.结果表明,PTFE发生摩擦化学反应并生成的羧酸基团,随后与CF研磨产生的石墨碳、破碎的CaF2以及其摩擦化学反应产物碳酸钙(CaCO3...  相似文献   

6.
采用新型高功率脉冲复合磁控溅射技术制备MoS2-Ti复合膜,并研究基体偏压和测试环境对复合膜摩擦学性能的影响.结果表明:制备的MoS2-Ti复合膜表面呈现颗粒状结构,Ti在薄膜表层与O反应形成氧化物有效抑制MoS2的氧化.随着基体负偏压从OV增大到-400 V,复合膜的S/Mo原子比逐渐减小.在-300 V偏压下,颗粒堆积最为紧密,薄膜硬度和弹性模量达到最大值,分别为9.7和137.1GPa,并具有最低的平均摩擦系数值(0.04)和磨损率[(10-7mm3/(N·m)].多种测试环境下的摩擦研究显示:在室温大气环境下复合膜的摩擦学性能与其结构的致密性紧密相关,而在N2以及不同湿度环境下薄膜表现出的优异摩擦学性能则归因于在摩擦过程中有效形成的转移膜贡献.  相似文献   

7.
作者研究了固体润滑膜的摩擦与磨损,特别强调的是使用了内装栓-盘式摩擦试验机的扫描电镜(SEM)和能量色散X-射线分析仪研究膜的磨损率。该仪器具有半定量测量磨痕上膜厚横截面分布的优点,因而可获得膜磨损率的结果。 在5N负荷、各种气氛下,以0.3~1.0mm/s的滑动速度对溅射MoS_2膜、离子镀铅膜和溅射聚四氟乙烯(PTFE)膜进行了试验。 氧气的存在响影MoS_2膜的磨损率。MoS_2膜在氮气和真空中的磨损率比在空气和氧气中的大一个数量级。这表明,氧气的存在对降低磨损率是有益的,至少在滑动起始阶段如此。与MoS_2膜相反,铅膜在含氧气氛中迅速磨损。在所有气氛中,它们的磨损率几乎比MoS_2膜的大三个数量级。PTFE膜的磨损率几乎不受气氛的影响。  相似文献   

8.
对比考察了青铜 -石墨复合材料在水润滑和干摩擦两种状态下的摩擦磨损性能及磨损机理 .结果表明 :水润滑下青铜 -石墨复合材料的磨损率明显比干摩擦下的小 ,其最小磨损率为 1.0 1× 10 -6mm3 /N·m ,而摩擦系数比干摩擦下的大 ,复合材料在干摩擦下的磨损机理主要为粘着磨损、剥层磨损和犁削 ,磨损较严重 ;而在水润滑下 ,复合材料的磨损机理主要为磨粒磨损和疲劳磨损 ,磨损较小 .这是因为水有利于降低摩擦副接触表面的温度 ,有效地抑制了基体青铜的转移 ;同时水促进了不锈钢偶件的氧化 ,形成薄而致密氧化膜 ,从而降低了磨损  相似文献   

9.
采用快速热压烧结方法成功制备了原位生成MoB增强的Cu-Sn-Al合金复合材料,研究了增强体添加含量对复合材料体系摩擦学性能的影响,并对其摩擦磨损机制进行了分析. 研究表明:在Cu-5Sn合金基体中添加MoAlB陶瓷颗粒后,烧结过程中,层状结构MoAlB陶瓷中的Al元素能够扩散到基体中,生成原位MoB增强Cu-Sn-Al合金复合材料. 此外,复合材料体系的硬度随着MoAlB添加量的增加逐渐提高,与Cu-5Sn合金相比,当添加MoAlB质量分数为30%时,复合材料硬度值提高了约5倍. 同时,随着添加MoAlB陶瓷颗粒含量的增加,复合材料体系摩擦系数和磨损率逐渐降低,当添加的MoAlB陶瓷颗粒质量分数为30%时,复合材料摩擦系数和磨损率分别低至0.33和5.4×10?5 mm3/(N·m). 由于原位生成MoB颗粒的钉扎效应,在摩擦过程中能够抑制基体材料的塑性变形,使得材料体系的硬度显著提高,磨损率明显降低,摩擦过程中表面生成的摩擦氧化物,能够降低材料体系的黏着磨损和二体磨粒磨损,可以起到优异的抗磨减摩效应.   相似文献   

10.
用放电等离子烧结(Spark Plasma Sintering,简称SPS)技术制备了Ni-Mo-Pb O高温自润滑复合材料,分析NiMo-Pb O复合材料的微观组织结构,研究了Ni-Mo-Pb O复合材料从室温至700℃的摩擦学性能.在烧结过程中,Pb O和Mo之间发生了氧化还原反应,SPS烧结制备的Ni-Mo-Pb O复合材料主要由Ni的固溶体、Pb和钼的氧化物组成.复合材料的摩擦和磨损性能与温度有关.Ni-Mo-Pb O复合材料的摩擦系数随着温度的增加先减小后增加.磨损率随着温度的增加先减小后稍有增加.少量的Pb O加入到镍基合金中显著改善了镍基复合材料的高温摩擦磨损性能.尤其在约500℃时,复合材料显现出非常低的摩擦系数(0.09)和磨损率[约2.8×10_(–6) mm_3/(N·m)],这归因于主要由Pb O、少量的Ni O及钼酸盐组成的致密的润滑膜的形成.  相似文献   

11.
采用碳纤维与聚四氟乙烯纤维(CF/PTFE)混编织物增强,制备了环氧树脂基自润滑复合材料,研究了钢背衬复合材料与45钢在环-环端面干摩擦状态下的摩擦学特性,考查了纤维织物、摩擦热、载荷、速度对材料摩擦磨损性能的影响,用红外热像仪、热电偶及风冷方式对摩擦副温度进行监控,用激光共聚焦显微镜和扫描电子显微镜对复合材料及偶件磨损面进行了观察与能谱分析.结果表明:与碳织物相比,混编纤维织物大大改善了复合材料的摩擦学性能,改善效果极大依赖于摩擦温度、载荷和速度参数.PTFE纤维磨损后在树脂基体及偶件表面形成减摩型转移膜层,材料表现为疲劳磨损特征.摩擦高温使复合材料摩擦学特性改变,黏结磨损加剧,偶件钢环表面出现氧化磨损,树脂基体塑性流动,摩擦力增大.混编纤维的排布方式影响复合材料的摩擦磨损性能,摩擦面上大量破碎的碳纤维易使偶件表面转移膜受到破坏,复合材料转变为以磨粒磨损为主,减摩主要源于磨屑中的润滑组分.  相似文献   

12.
龚国芳  王新 《摩擦学学报》2000,20(5):321-325
在MM-200型磨损试验机上分别对以釜内聚合和熔融机械混合方法制备的高岭土填充超高分子量聚乙烯基复合材料(UHMWPE/Kaolin)在干摩擦条件下与45^#钢对摩时的摩擦磨损性能进行了研究,并用扫描电子显微镜和立体光学显微镜对其磨损表面进行了观察与分析,对材料的磨损机理进行了探讨。结果表明:引入适量的高岭土能明显降低UHMWPE的摩擦系数和磨损率,用釜内聚合方法制备的UHMWPE/Kaolin复  相似文献   

13.
The friction and wear behavior and mechanism as well as the mechanical properties of polytetrafluoroethylene (PTFE) composites filled with potassium titanate whiskers (PTW) and short carbon fibers (CF) under dry, wet and alkaline conditions were investigated. Experiments indicated that owing to appropriate cooling and boundary lubricating effects, the filled PTFE composites showed much lower frictional coefficient and better wear resistance under alkaline than dry and wet sliding conditions. The wear resistance of carbon-fiber-filled PTFE was much better than that of potassium titanate-whisker-filled PTFE composites in water. Results also showed that the transfer film on counterpart rings was significantly hindered by water and alkali. Hydrophilic-filler-reinforced PTFE composites yield higher wear rate when sliding under water.  相似文献   

14.
采用MM-200型摩擦磨损试验机考察了聚四氟乙烯(PTFE)和MoS2填充聚酰亚胺(PI)复合材料在干摩擦下与GCr15轴承钢对摩时的摩擦磨损性能,并利用扫描电子显微镜和X射线能量色散谱仪分析了PI复合材料及其偶件磨损表面形貌和元素面分布.结果表明,PTFE和MoS2均可降低PI的摩擦系数,其中PI 30%MoS2复合材料的减摩性能最佳,其摩擦系数同纯PI的相比降低了约50%.除PI 10%PTFE 20%MoS2外,其它几种复合材料的抗磨性能均明显优于纯PI,其中PI 20%PTFE 10%MoS2复合材料的抗磨性能最佳,其磨损率比纯PI的低1个数量级.PI复合材料的摩擦磨损性能同其在偶件磨损表面形成的转移膜的性质密切相关,当转移膜厚度适当且分布较均匀时,PI复合材料的减摩抗磨性能良好.  相似文献   

15.
在栓-盘摩擦磨损试验机上考察了干摩擦条件下偶件表面粗糙度对碳纤维增强尼龙(PA1010)复合材料摩擦学性能的影响,采用不迩显微镜观察分析了偶件表面转移膜的形貌。结果表明,碳纤维能够明显提高PA1010的耐磨性能,当碳纤维增强相的质量分数为10%和20%时,增强PA1010复合材料的磨损率比非增强PA1010的降低3~6倍。这是由于碳纤维起到了承载作用并具有较强的抗犁削能力所致,磨损表面形貌光学显微分析表明:磨损前后偶件表面形貌发生了明显的变化;当偶件表面粗糙度Ra处于0.11~0.13um范围内时,复合材料的摩损率最低;随Ra值的增大或减小微切削和转移膜疲劳脱落加剧致使复合材料的磨损率快速增大。  相似文献   

16.
分别用偶联剂、稀土以及偶联剂 -稀土混合物处理玻璃纤维表面 ,以改善玻璃纤维与聚四氟乙烯之间的界面结合力 ,考察了玻璃纤维填充聚四氟乙烯复合材料在油润滑下的摩擦学性能 .结果表明 :在油润滑条件下 ,表面处理玻璃纤维填充聚四氟乙烯复合材料的摩擦系数比未经处理玻璃纤维填充聚四氟乙烯复合材料的低 ,耐磨性亦较优 ;而稀土处理玻璃纤维填充聚四氟乙烯复合材料具有最低的摩擦系数及最高的耐磨性和极限 pv值 ;未经处理玻璃纤维填充聚四氟乙烯复合材料的磨损形式主要为粘着转移 ,偶联剂处理玻璃纤维填充聚四氟乙烯复合材料和偶联剂与稀土处理玻璃纤维填充聚四氟乙烯复合材料均以磨粒磨损为主 ,而稀土处理玻璃纤维填充聚四氟乙烯复合材料的磨损机理主要为粘着磨损和轻微磨粒磨损  相似文献   

17.
纤维增强铸型尼龙在水润滑条件下的摩擦磨损性能研究   总被引:10,自引:2,他引:8  
考察了玻璃纤维和碳纤维增强MC尼龙在水润滑条件下的摩擦磨损特性,并借助扫描电子显微镜和表面形貌仪分析了磨损机理。结果表明:在水润滑条件下,纤维增强MC尼龙的摩擦系数比干摩擦下的低,耐磨性优于未增强的基体材料;其中碳纤维增强MC尼龙比玻璃纤维增强MC尼龙具有更低的摩擦系数和更高的耐磨性能;碳纤维增强MC尼龙的磨损机理主要是粘着转移,同时伴有犁削作用,而玻璃纤维增强MC尼龙的磨损机理主要是犁削作用。  相似文献   

18.
对比考察了聚苯酯(Ekonol)和PAB纤维增强PTFE复合材料在干摩擦和液氮介质中的摩擦磨损性能,利用扫描电子显微镜观察分析在干摩擦和液氮条件下Ekonol/PAB纤维增强PTFE复合材料的磨损表面形貌及其磨损机理,同时还考察了温度对复合材料冲击韧性的影响.结果表明:在液氮条件下,PTFE的抗犁削能力增强,Ekonol/PAB/PTFE复合材料的磨损量明显比干摩擦下低,复合材料的摩擦系数比干摩擦下大,载荷对复合材料的磨损量影响较小,复合材料的摩擦系数和磨损量随着滑动速度增加基本保持不变,材料的磨损机理主要为轻微犁削和脆性断裂;而在干摩擦条件下,载荷对复合材料的磨损量影响显著,随着滑动速度增加,复合材料的摩擦系数先增后减,磨损量逐渐增大,材料的磨损机理主要以犁削、粘着磨损及疲劳磨损为主.在2种试验条件下复合材料的摩擦系数均随载荷增加而减小;低温时材料的冲击韧性约为常温时的1/2.  相似文献   

19.
以注塑成型法制备了无机填料 Cu O和炭纤维增强尼龙 10 10 (PA10 10 )复合材料 ,采用 MM- 2 0 0型摩擦磨损试验机考察了复合材料的摩擦磨损性能 ,分析了磨损表面和转移膜形貌 .研究结果表明 :Cu O和炭纤维可以显著改善尼龙复合材料的摩擦学性能 ,以 2 0 % CF- 10 % Cu O- PA10 10的耐磨性能和拉伸强度最高 ;在摩擦过程中炭纤维促进 Cu O还原生成单质铜微粒 ,形成具有良好自润滑性能的含铜转移膜 ,对减少摩擦副之间的磨粒磨损和粘着磨损及提高转移膜的结合强度起重要作用  相似文献   

20.
碳纳米管改性聚四氟乙烯复合材料的摩擦磨损性能研究   总被引:17,自引:5,他引:17  
评价了用不同含量碳纳米管(CNTs)改性聚四氟乙烯(PTFE)复合材料的力学性能,利用MM-200型摩擦磨损试验机研究了CNTs含量对PTFE复合材料摩擦磨损性能的影响,借助于扫描电子显微镜观察分析了试样磨损表面及磨屑形貌,并探讨其磨损机理.结果表明:CNTs能够提高PTFE复合材料的硬度和冲击强度,在本文研究范围内,当CNTs的质量分数为7%时,PTFE复合材料的力学性能最佳;CNTs能够增加PTFE复合材料的摩擦系数、降低其磨损量,当其质量分数为10%时,PTFE复合材料的耐磨损性能最佳.纤维状碳纳米管可以阻止PTFE带状结构的大面积破坏,以及在摩擦过程中于偶件表面能够形成转移膜并隔离复合材料与偶件的直接接触是其减摩耐磨作用的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号