首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
以3-(苯并噻唑-2-巯基)丙烷磺酸为阴离子,烷基链长与活性元素不同的季鏻、季铵为阳离子,合成了4种杂环磺酸基离子液体(ZILs),研究了其作为钛合金润滑剂的摩擦学性能.并以传统离子液体1-丁基-3-甲基咪唑双三氟甲烷磺酰亚铵盐(L-F104)作为对照样,评价了ZILs的黏温性能、热稳定性、吸附性能和摩擦学性能.研究结果表明:ZILs的黏度均大于L-F104的黏度,且随阳离子链长的增加略有减小.同时,ZILs的热分解温度均高于240℃,具有较好的热稳定性.在不同温度下,ZILs(除N4444ZPS和P8888ZPS外)在钢/钛摩擦副上的减摩抗磨性能均优于对照样LF104,主要归因于ZILs阴离子中磺酸基在钛界面上的极性吸附作用.此外,ZILs中活性元素与钛金属基底发生摩擦化学反应,形成稳定的化学反应膜.  相似文献   

2.
发展高性能离子液润滑脂是离子液体作为新型润滑材料在摩擦学领域的热点和重点.针对这一问题,用三丁基烷基季膦盐离子液体为基础油,聚四氟乙烯微粉为稠化剂制备了三种具有较高滴点的润滑脂.在钢/钢摩擦副表面摩擦学研究结果表明:与1-辛基-3甲基咪唑磷酸二辛基酯盐离子液体润滑脂相比,在室温和高温(100℃)下,三丁基烷基季膦盐离子液体润滑脂均具有优异的减摩抗磨性能.通过磨斑表面的XPS分析和电场条件下考察离子液体润滑脂摩擦系数变化,推断三丁基烷基季膦盐离子液体润滑脂的减摩抗磨机理为离子液体润滑脂中的聚四氟乙烯与摩擦表面发生摩擦化学反应生成含FeF_2的化学反应膜,以及离子液体阳离子、阴离子以物理吸附的方式在摩擦表面形成稳定吸附膜.  相似文献   

3.
合成了两种脲基功能化的咪唑无卤素离子液体DOSS-1和DOSS-4. 采用SRV-V微动摩擦磨损试验机和Bruker-NPFLEX表面非接触光学三维轮廓仪,考察这两种离子液体作为2号复合锂基润滑脂(G)的减摩抗磨添加剂的摩擦学性能. 摩擦测试结果表明:这两种功能化咪唑离子液体添加到2号复合锂基润滑脂(G)中均表现出优异的减摩抗磨性能. 在添加量同等条件下,长链的DOSS-4表现出优于DOSS-1的减摩抗磨性能. 当添加质量分数为3%时,DOSS-4和DOSS-1的减摩抗磨性能最佳. 利用表面轮廓和扫描电镜进一步分析了磨斑表面的形貌,同时结合X射线光电子能谱仪(XPS)进一步分析了磨斑表面主要化学元素组成,阐明其摩擦机理. 该离子液体能够显著地降低摩擦磨损是因其在摩擦副表面形成了含N元素和S元素的化学反应膜.   相似文献   

4.
以1-丁基-3-甲基咪唑四氟硼酸盐(L-B104)、六氟磷酸盐(L-P104)及双三氟甲烷磺酰亚胺盐(L-F104)三种离子液体为研究对象,采用STA 449 C同步热分析仪、SYP1003-III运动黏度仪、Optimol SRV-IV微动摩擦磨损试验机、Micro XAM三维廓仪以及铜片腐蚀试验分别测试了这三种离子液体在混合前后其热稳定性、黏温性能、摩擦学性能以及对基底材料的腐蚀性能的变化规律.研究结果表明:L-B104+L-P104,L-B104+L-F104和L-P104+LF104三个混合体系中,L-B104+L-F104对基底材料的腐蚀性比未混合之前两种纯离子液体的腐蚀性低;其热稳定性高于纯离子液体L-B104,而接近于L-F104;这个体系在常温和高温条件下,都表现出较好的减摩抗磨性能.使用这种混合润滑剂,在实际应用中不但可以降低高成本离子液体L-F104的使用量,同时还能达到理想的润滑效果.  相似文献   

5.
合成了含季铵阳离子的聚离子液体PPM-Cl,采用阴离子交换得到三种具有不同烷基链长羧酸根阴离子的聚离子液体PPM-Ba, PPM-Ha, PPM-Oa. 发现聚离子液体PPM-Ba, PPM-Ha, PPM-Oa能够提升水基润滑剂的黏度. 将聚离子液体PPM-Ba, PPM-Ha, PPM-Oa作为润滑添加剂溶于去离子水得到一系列水基润滑剂,采用SRV-IV微动摩擦磨损试验机考察了水基润滑剂的摩擦磨损性能并与含有商业增黏剂APE30的水基润滑剂进行了比较. 结果发现,聚离子液体PPM-Ba, PPM-Ha, PPM-Oa对水基润滑剂的增黏效果优于商业增黏剂APE30,聚离子液体PPM-Ba, PPM-Ha, PPM-Oa作为润滑添加剂均体现出优异的减摩抗磨性能. 其中,阴离子链长较长的聚离子液体PPM-Oa能够明显提升水基润滑剂的抗腐蚀性能,同时使水基润滑剂具有优异的减摩抗磨性能. 利用非接触表面光学三维轮廓仪和扫描电子显微镜分析摩擦副的磨斑区域的表面形貌,发现含聚离子液体的水基润滑剂在摩擦过程中能够减缓对摩擦副表面的腐蚀并抑制黏着磨损. 利用X射线光电子能谱仪分析摩擦副磨斑区域的表面化学状态,发现摩擦过程中聚离子液体在摩擦副表面形成吸附膜并与金属摩擦副发生复杂的摩擦化学反应,生成摩擦化学反应膜,发挥了优异的减摩抗磨作用.   相似文献   

6.
磷酸酯类双离子液体的合成及摩擦学性能研究   总被引:2,自引:1,他引:1  
以咪唑、1,6-二溴代己烷和磷酸三乙酯合成1,6-二(3-乙基-1-咪唑基)己烷二乙基磷酸盐双离子液体,采用核磁共振谱仪(NMR)和傅立叶变换红外光谱仪(FTIR)等对其结构及理化性能进行了分析;用SRV摩擦磨损试验机考察了其作为钢/钢体系润滑剂的减摩抗磨作用;用SEM和XPS对磨痕表面的形貌和元素组成进行了表征,并分析了其润滑机制.结果表明,该类双离子液体具有较好的低温流动性,作为润滑剂对钢/钢摩擦副具有优异的减摩抗磨性能.XPS分析结果表明,该离子液体在钢磨损表面形成了含FePO4和Fe4(P2O7)3等物质的边界润滑膜,从而有效地提高了摩擦副的承载能力和抗磨损性能.  相似文献   

7.
设计制备了三种全氟聚醚羧酸铵离子液体,在微动振动摩擦磨损试验机上考察了其在不同温度下对钢/铜锡合金以及钢/钢摩擦副的润滑性能,并与全氟聚醚(PFPE)和全氟聚醚羧酸(PFPEC)进行了对比. 通过测量接触角表征了所制备离子液体对金属表面的润湿性,通过测试摩擦试验过程中接触电阻的变化分析了摩擦过程中摩擦膜的变化;采用扫描电镜和X射线光电子能谱仪分别对磨斑表面形貌和元素状态进行了表征. 结果表明:作为钢/铜锡合金摩擦副的润滑剂时,全氟聚醚羧酸铵离子液体在常温下的润滑性能与PFPE和PFPEC相差不大,但在高温条件下表现出更为优异的减摩抗磨性能;而作为钢/钢摩擦副的润滑剂,其在常温、高温条件下均表现出优于PFPE以及PFPEC的减摩抗磨性能. 多种物理化学表征研究表明该类离子液体优异的减摩抗磨性能归因于其在金属表面优异的吸附性能以及稳定摩擦化学反应膜的形成.   相似文献   

8.
利用激光加工技术在钛合金表面构建不同尺寸的圆形微坑织构图案. 利用MS-T3001型试验机测试了圆形微坑织构、离子液体[1-丁基-3-甲基咪唑三氟甲基磺酰胺盐和十四烷基三丁基季鏻双(2-乙基己基)磷酸盐]及二者构成润滑组合的摩擦磨损性能. 利用金相显微镜观察圆形微坑织构的尺寸和表面形貌,利用扫描电镜分析摩擦过程前后织构化表面的形貌,采用ANSYS Fluent软件模拟分析表面织构参数和离子液体理化性质对摩擦学性能的影响. 结果表明,表面织构、离子液体、表面织构与离子液体的复合体系均展示了良好的减摩抗磨性能. 优化表面织构与离子液体的组合能够提升润滑体系的摩擦学性能. 表面织构与离子液体组成的复合润滑体系,摩擦系数随圆形微坑织构直径的增大而减小,归因于圆形微坑织构能够储存磨屑和离子液体并形成稳定的离子液体润滑薄膜,黏度较大的离子液体在收敛区间产生楔形效应,导致对上摩擦副升力增大.   相似文献   

9.
合成了不同链长的N/P无卤素离子液体(NPILs:缩写为NP-11114,NP-11116,NP-11118)润滑剂,以聚α-烯烃(PAO 10)和卤素离子液体1-辛基3-甲基咪唑六氟磷酸盐(L-P 108)作为参照样,评价NPILs、PAO 10及L-P 108之间黏温性能、热稳定性以及室温和高温条件下的钢/钢摩擦副润滑剂的性能差异,探索了NPILs阳离子链长变化对其物理化学性质和摩擦学性能的影响规律. 结果表明:NPILs的黏度高于PAO 10和L-P 108,热分解温度低于PAO 10和L-P 108,NPILs黏度和热分解温度随着链长的增加而增加. 作为钢/钢摩擦副的润滑剂时,NPILs室温状态下减摩性能不及L-P108,但是NP-11118的抗磨性能优于L-P108;高温状态下,NPILs的减摩抗磨性能均优于L-P 108. 在常温和高温下NPILs相比PAO 10均具有优异的减摩抗磨性能,而且摩擦学性能随着烷基链长的增加而提高. 通过对磨斑表面进行扫描电镜分析证明这类离子液体具有优异的抗磨性能,通过EDS和XPS对磨斑表面的元素进行分析结果表明这类离子液体优异的摩擦学性能归因于离子液体结构中包含的N、P元素与金属基底发生摩擦化学反应所形成的具有优异减摩抗磨特性的摩擦化学反应膜.   相似文献   

10.
合成了三种含有六氟乙酰丙酮阴离子和不同烷基链长咪唑阳离子的室温离子液体([Cnmim][hfac];n=4,6,8)润滑剂,以1-丁基-3-甲基咪唑双三氟甲烷磺酰基亚胺盐(L-F104)为参照样,研究了它们作为不同金属摩擦副润滑剂的摩擦学性能和理化性质,并探索了其结构中阳离子烷基链长的影响规律. 结果表明:[Cnmim][hfac]离子液体对金属基底材料腐蚀较轻,常温下作为钢/铜和钢/铝摩擦副的润滑剂均具有良好的润滑性能,并且随着其结构中阳离子烷基链的增长,热稳定性和黏度呈递增趋势,减摩抗磨作用也更加优异.   相似文献   

11.
合成了含酯基官能团的咪唑类离子液体;研究了其物化性质及热稳定性;通过与非功能化的烷基咪唑离子液体对比,在SRV摩擦磨损试验机上研究了常温及高温条件下酯基功能化离子液体作为钢/钢摩擦副润滑剂的摩擦学性能;用SEM和XPS对磨斑表面进行了分析.结果表明:酯基功能化离子液体具有很高的热稳定性;酯基团的引入使得离子液体的黏度有所增加,导致其在较低载荷下的减摩性能降低,但引入的酯基官能团增强了离子液体对金属表面的化学吸附力,使其抗磨性能显著提高,在高载荷下离子液体分解所产生的活性元素氟与摩擦副表面的金属发生摩擦化学反应,生成以氟化亚铁和氧化铁为主体的边界润滑膜,从而降低了摩擦和磨损.同时发现含有TF2N-阴离子的功能化离子液体较含有BF-4阴离子的功能化离子液体具有更好的抗磨性能;含有较长N-烷基链的功能化离子液体的抗磨减摩性能较好.  相似文献   

12.
以烷基胺盐为阳离子,磷酸酯为阴离子合成了三种磷酸酯胺盐离子液体(磷酸二丁酯单丁胺离子液体,磷酸二丁酯二丁胺离子液体,磷酸二丁酯四丁铵离子液体),并在微动摩擦磨损试验机(SRV)上评价了其作为钢/铜锡合金摩擦副润滑剂的高温摩擦学性能.结果表明所合成的磷酸酯离子液体具有优异的减摩抗磨性能;磷与氮元素之间在摩擦过程中存在协同作用.采用扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)分析磷酸酯胺盐离子液体的润滑机理.从磨斑形貌对比图与磨损表面特征元素的XPS能谱图可以看出,该离子液体在铜磨损表面形成了一层具有保护作用的边界润滑膜,从而使得磷酸酯胺盐离子液体表现出优异的高温摩擦学性能.  相似文献   

13.
合成制备了两种胆固醇类季磷盐油溶性类离子液体,并将其分别作为聚α烯烃PAO-10的润滑添加剂,静置试验和热重分析结果表明两种油溶性类离子液体在PAO-10中具有良好的分散稳定性和热稳定性. 微动摩擦磨损测试结果表明两种类离子液体可显著改善基础油对钢/铝摩擦副的摩擦学性能. 扫描电子显微镜(SEM)结果表明空白PAO-10润滑摩擦副时磨损类型以黏着磨损为主,以添加两种离子液体的混合油样为润滑剂时磨斑直径显著降低,此时摩擦副间磨损类型以磨粒磨损和腐蚀磨损为主. X射线光电子能谱分析(XPS)与X射线能谱仪(EDS)表明类离子液体中的活性元素在摩擦过程中可与铝基体表面发生摩擦化学反应. 两种类离子液体的润滑机理归因于类离子液体与金属基体发生摩擦化学反应生成具有减摩抗磨作用的磷酸盐和硫酸盐等耐磨化合物.   相似文献   

14.
设计合成了三种具有不同官能团结构的氨基酸类离子液体,采用SRV-Ⅳ微动摩擦磨损试验机考察了其作为Si_3N_4/Si_3N_4和钢/钢摩擦副润滑剂的摩擦学性能,并与丙三醇进行对比,采用扫描电镜和X射线光电子能谱仪分析磨斑形貌和表面元素的化学状态.结果表明:三种氨基酸类离子液体均能适用于两种摩擦副的润滑,并具有良好的减摩抗磨性能.羟基和羧基官能团的存在不仅有效增强了离子液体在基底上的物理吸附作用,同时还促使其与摩擦副发生摩擦化学反应.比较三种离子液体的摩擦学性能发现,同时含有两个羧基的谷氨酸四丁基磷盐离子液体的减磨性能优于其他两种只含一个羟基或羧基基团的离子液体.  相似文献   

15.
合成了三种膦酸酯离子液体,在微动微振摩擦磨损试验机SRV-IV上评价其作为两种碳氢润滑油(矿物油和聚α-烯烃)的添加剂对钢/钢摩擦副的摩擦学性能.采用扫描电子显微镜(SEM)及X射线光电子能谱仪(XPS)对磨斑表面进行了分析.结果表明:膦酸酯离子液体能够有效改善这两种碳氢润滑油的摩擦学性能,离子液体分子的极性性质使其能够从基础油中不断吸附到金属表面,形成有效的吸附润滑膜,并且膦酸酯离子液体与金属基底发生了摩擦化学反应,形成了摩擦化学反应膜,从而使该离子液体表现出优异的减摩抗磨性能.  相似文献   

16.
胍盐离子液体对钢/铝摩擦副的摩擦性能研究   总被引:1,自引:1,他引:0  
合成了两种胍盐离子液体,采用热重分析仪评价其热稳定性.利用SRV往复摩擦试验机测试了离子液体的摩擦学性能并与常规离子液体和液体石蜡进行了对比.利用扫描电子显微镜观察磨斑处的形貌并用X射线光电子能谱仪表征了磨斑表面的化学状态,并对润滑机理进行了分析.结果表明:胍盐离子液体对钢/铝摩擦副具有优异的摩擦学性能;摩擦过程中,钢/铝摩擦副界面发生了复杂的摩擦化学反应并形成了边界润滑膜.  相似文献   

17.
以1-己基-3-甲基咪唑六氟磷酸盐离子液体为基础油,考察了不同形态二硫化钼(Mo S2)微粒的摩擦学性能.低载低速下,空心球形Mo S2(空心球)与片状纳米Mo S2(纳米片)均能改善基础油的减摩抗磨性能,片状微米Mo S2(微米片)不仅不具备减摩性能,还会增加磨损;高载高速下,空心球仍保持着较好的减摩抗磨性能,微米片也表现出一定的减摩抗磨能力,而纳米片易导致润滑失效.纯离子液体润滑时钢球表面出现了一定的疲劳磨损,添加空心球与纳米片后,疲劳磨损消失,磨损量下降.空心球与纳米片润滑时,Mo S2能转移到摩擦表面,少部分仍以Mo S2形式存在,其余Mo S2与基础油及摩擦副材料等发生摩擦化学反应,形成由Mo O3、Mo S2、Fe PO4、Fe SO4、Fe F2及含N与S的有机物组成的复合润滑膜;微米片润滑时,很少Mo S2参与了转移膜的形成,因而对基础油改性效果较差.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号