首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 604 毫秒
1.
The explicit dependence of LES fields on the turbulence resolution scale Δ implies that LES statistics usually vary with Δ and exhibit different convergence behaviors for different types of statistics, flow variables and subgrid LES models. The present work compares the performance of two popular subgrid models—the dynamic Smagorinsky model and the Vreman model—based on the convergence of their LES statistics with respect to Δ for a piloted methane-air (Sandia D) flame. The Δ-dependence of the LES statistics is studied based on five grids with progressively increased resolution ranging from 3 × 105 to about 10.4 × 106 cells. The simulation results show that the resolved velocity statistics converge for the finest grids with some weak Δ-dependence observed in the variance fields. The mixture fraction statistics are found to be more sensitive to the turbulence resolution scale upstream in the flame signifying the importance of the estimation of the Δ-invariant LES statistics at the DNS limit. For the considered flame the Vreman subgrid model exhibits good performance with the statistics being very close to those given by the dynamic Smagorinsky model, and being rather insensitive to a choice of the model constant.  相似文献   

2.
A new subgrid-scale (SGS) model for the thermal field is proposed. The model is an extended version of the mixed-timescale (MTS) SGS model for velocity field by Inagaki et al. (2005), which has been confirmed to be a refined SGS model for velocity field suited to engineering-relevant practical large eddy simulation (LES). In the proposed model for the thermal field, a hybrid timescale between the timescales of the velocity and thermal fields is introduced in a manner similar to velocity-field modeling. Thus, the present model dispenses with an ambiguous SGS turbulent Prandtl number, like the dynamic SGS model. In addition, the wall-limiting behavior of turbulence is satisfied, which is not in the original MTS model, by incorporating the wall-damping function for LES based on the Kolmogorov velocity scale proposed by Inagaki et al. (2010). The model performance is tested in plane channel flows at various Prandtl numbers, and the results show that this model gives the ratio of the timescales between the velocity and thermal fields similar to that obtained using the dynamic Smagorinsky model with locally calculated model parameters. It is also shown that the proposed model predicts better mean and fluctuating temperature profiles in cooperation with the revised MTS model for the velocity field, than the Smagorinsky model and the dynamic Smagorinsky model. The present model is constructed with fixed model parameters, so that it does not suffer from computational instability with the dynamic model. Thus, it is expected to be a refined and versatile SGS model suited for practical LES of the thermal field.  相似文献   

3.
This work is concerned with the investigation of fluid-mechanical behaviour and the performance of different subgrid-scale models for LES in the numerical prediction of a confined axisymmetrical bluff-body flow. Four subgrid-scale turbulence models comprising the Smagorinsky model, Dynamic Smagorinsky model, WALE model and subgrid turbulent kinetic energy model, are validated and compared directly against the experimental data. Two different mesh counts are used for the LES studies, one with a higher mesh resolution in the shear layer than the other. It is found that increasing the mesh resolution improves the time-averaged fluctuating velocity profiles, but has less effect on the time-averaged filtered velocity profiles. A comparison against experiment shows that the recirculation zone length is well predicted using LES. The accuracy of the four different subgrid scale models is then assessed by comparing the LES results using the dense mesh with the experiment. Comparisons with the time-averaged axial and radial velocity profiles demonstrate that LES displays good agreement with the experimental data, with the essential flow features captured both qualitative and quantitatively. The subgrid velocity also matches well with the experimental results, but a slight underprediction of the inner shear layer is observed for all subgrid models. In general, it is found that the Smagorinsky and WALE models are more dissipative than the Dynamic Smagorinsky model and subgrid TKE model. Comparison of the spectra against the experiment shows that LES can capture dominant features of the turbulent flow with reasonable accuracy, and weak spectral peaks related to the Kevin-Helmholtz instability and helical vortex shedding are present.  相似文献   

4.
基于人工神经网络的湍流大涡模拟方法   总被引:1,自引:0,他引:1  
大涡模拟方法(LES)是研究复杂湍流问题的重要工具,在航空航天、湍流燃烧、气动声学、大气边界层等众多工程领域中具有广泛的应用前景.大涡模拟方法采用粗网格计算大尺度上的湍流结构,并用亚格子(SGS)模型近似表达滤波尺度以下的流动结构对大尺度流场的作用.传统的亚格子模型由于只利用了单点流场信息和简单的函数关系,在先验验证中相对误差较大, 在后验验证中耗散过强. 近几年来,机器学习方法在湍流建模问题中得到了越来越多的应用.本文介绍了基于人工神经网络(ANN)的湍流亚格子模型的最新进展.详细地讨论了人工神经网络混合模型、空间人工神经网络模型和反卷积人工神经网络模型的构造方法.借助于人工神经网络强大的数据插值能力,新的亚格子模型的先验精度和后验精度均有显著提升. 在先验验证中,新模型所预测的亚格子应力的相关系数超过了0.99,在预测精度上远高于传统的大涡模拟模型. 在后验验证中,新模型对各类湍流统计量和瞬态流动结构的预测都优于隐式大涡模拟方法、动态Smagorinsky模型、动态混合模型等传统模型.因此, 人工神经网络方法在发展复杂湍流的先进大涡模拟模型中具有很大的潜力.   相似文献   

5.
Large Eddy Simulation (LES) of the decay of isotropic turbulence and of channel flow has been performed using an explicit second-order unstructured grid algorithm for tetrahedral cells. The algorithm solves for cell-averaged values using the finite volume form of the unsteady compressible Jittered Navier-Stokes equations. The inviscid fluxes are obtained from Godunov's exact Riemann solver. Reconstruction of the flow variables to the left and right sides of each face is performed using least squares or Frink's method. The viscous fluxes and heat transfer are obtained by application of Gauss' theorem. LES of the decay of nearly incompressible isotropic turbulence has been performed using two models for the SGS stresses: the Monotone Integrated Large Eddy Simulation (MILES) approach, wherein the inherent numerical dissipation models the sub-grid scale (SGS) dissipation, and the Smagorinsky SGS model. The results using the MILES approach with least squares reconstruction show good agreement with incompressible experimental data. The contribution of the Smagorinsky SGS model is negligible. LES of turbulent channel flow was performed at a Reynolds number (based on channel height and bulk velocity) of 5600 and Mach number of 0.5 (at which compressibility effects are minimal) using Smagorinsky's SGS model with van Driest damping. The results show good agreement with experimental data and direct numerical simulations for incompressible channel flow. The SGS eddy viscosity is less than 10% of the molecular viscosity, and therefore the LES is effectively MILES with molecular viscosity.  相似文献   

6.
In this work,a discrete particle model(DPM) was applied to investigate the dynamic characteristics in a gas-solid bubbling fluidized bed of binary solid particles.The solid phase was simulated by the hardsphere discrete particle model.The large eddy simulation(LES) method was used to simulate the gas phase.To improve the accuracy of the simulation,an improved sub-grid scale(SGS) model in the LES method was also applied.The mutative Smagorinsky constant case was compared with the previously published experimental data.The simulation by the mutative Smagorinsky constant model exhibited better agreement with the experimental data than that by the common invariant Smagorinsky constant model.Various restitution coefficients and different compositions of binary solids were investigated to determine their influences on the rotation characteristics and granular temperatures of the particles.The particle translational and rotational characteristic distributions were related to certain simulation parameters.  相似文献   

7.
Smagorinsky‐based models are assessed in a turbulent channel flow simulation at Reb=2800 and Reb=12500. The Navier–Stokes equations are solved with three different grid resolutions by using a co‐located finite‐volume method. Computations are repeated with Smagorinsky‐based subgrid‐scale models. A traditional Smagorinsky model is implemented with a van Driest damping function. A dynamic model assumes a similarity of the subgrid and the subtest Reynolds stresses and an explicit filtering operation is required. A top‐hat test filter is implemented with a trapezoidal and a Simpson rule. At the low Reynolds number computation none of the tested models improves the results at any grid level compared to the calculations with no model. The effect of the subgrid‐scale model is reduced as the grid is refined. The numerical implementation of the test filter influences on the result. At the higher Reynolds number the subgrid‐scale models stabilize the computation. An analysis of an accurately resolved flow field reveals that the discretization error overwhelms the subgrid term at Reb=2800 in the most part of the computational domain. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
In this work, a discrete particle model (DPM) was applied to investigate the dynamic characteristics in a gas–solid bubbling fluidized bed of binary solid particles. The solid phase was simulated by the hard-sphere discrete particle model. The large eddy simulation (LES) method was used to simulate the gas phase. To improve the accuracy of the simulation, an improved sub-grid scale (SGS) model in the LES method was also applied. The mutative Smagorinsky constant case was compared with the previously published experimental data. The simulation by the mutative Smagorinsky constant model exhibited better agreement with the experimental data than that by the common invariant Smagorinsky constant model. Various restitution coefficients and different compositions of binary solids were investigated to determine their influences on the rotation characteristics and granular temperatures of the particles. The particle translational and rotational characteristic distributions were related to certain simulation parameters.  相似文献   

9.
An in-house large eddy simulation (LES) based fire field model has been developed for large-scale compartment fire simulations. The model incorporates four major components, including subgrid-scale turbulence, combustion, soot and radiation models which are fully coupled. It is designed to simulate the temporal and fluid dynamical effects of turbulent reaction flow for non-premixed diffusion flame. Parametric studies were performed based on a large-scale fire experiment carried out in a 39-m long test hall facility. Several turbulent Prandtl and Schmidt numbers ranging from 0.2 to 0.5, and Smagorinsky constants ranging from 0.18 to 0.23 were investigated. It was found that the temperature and flow field predictions were most accurate with turbulent Prandtl and Schmidt numbers of 0.3, respectively, and a Smagorinsky constant of 0.2 applied. In addition, by utilising a set of numerically verified key modelling parameters, the smoke filling process was successfully captured by the present LES model.  相似文献   

10.
In this study, we report on the direct measurement of the density-weighted subgrid scale (SGS) stress tensor in turbulent premixed flames. In large-eddy simulations (LES), this unresolved tensor is typically modelled using eddy viscosity approaches. Additionally to the direct measurement, we provide a pure experimentally based a-priori test of the commonly used eddy viscosity model suggested by Smagorinsky. For two turbulent premixed V-shaped methane–air flames, a statistical analysis is presented where the correlation between the directly measured SGS stress tensor and the eddy viscosity model following Smagorinsky is tested. The measurement strategy is based on the application of a dual-plane stereo-PIV technique which enables the measurement of the 3D flow field in two parallel planes. This allows the determination of velocities as well as velocity gradients in all three directions. Here, a vector resolution of 118 μm was achieved. For a priori testing, the data are subjected to a spatial filtering procedure that reproduces the application of the filter function in LES. The calculation of velocity gradients is performed after the application of this spatial averaging. Additionally to the velocity field, the flame front position is deduced from the clearly observable step in the tracer particle number density between burnt and unburnt regions of the flame. This facilitates the direct single-shot-based evaluation of all components of the density-weighted SGS stress tensor. Additionally, the model expressions related to these terms can be determined, which is done in this first study for the static Smagorinsky model. With that, the instantaneous local comparison between directly measured stress terms and modelled terms is possible, based on the instantaneous local evaluation procedure. The measurement procedure is described, and first results are presented and discussed. They show a rather poor performance of the static form of the Smagorinsky model (with fixed Smagorinsky constant). Our future aims are to use the directly measured SGS data for the a-priori comparison with more advanced models.  相似文献   

11.
A Lagrangian dynamic formulation of the mixed similarity subgrid (SGS) model for large-eddy simulation (LES) of turbulence is proposed. In this model, averaging is performed over fluid trajectories, which makes the model applicable to complex flows without directions of statistical homogeneity. An alternative version based on a Taylor series expansion (nonlinear mixed model) is also examined. The Lagrangian models are implemented in a finite difference code and tested in forced and decaying isotropic turbulence. As comparison, the dynamic Smagorinsky model and volume-averaged formulations of the mixed models are also tested. Good results are obtained, except in the case of low-resolution LES (323) of decaying turbulence, where the similarity coefficient becomes negative due to the fact that the test-filter scale exceeds the integral scale of turbulence. At a higher resolution (643), the dynamic similarity coefficient is positive and good agreement is found between predicted and measured kinetic energy evolution. Compared to the eddy viscosity term, the similarity or the nonlinear terms contribute significantly to both SGS dissipation of kinetic energy and SGS force. In order to dynamically test the accuracy of the modeling, the error incurred in satisfying the Germano identity is evaluated. It is found that the dynamic Smagorinksy model generates a very large error, only 3% lower than the worst-case scenario without model. Addition of the similarity or nonlinear term decreases the error by up to about 50%, confirming that it represents a more realistic parameterization than the Smagorinsky model alone.  相似文献   

12.
The dynamic model for large-eddy simulation (LES) of turbulent flows requires test filtering the resolved velocity fields in order to determine model coefficients. However, test filtering is costly to perform in LES of complex geometry flows, especially on unstructured grids. The objective of this work is to develop and test an approximate but less costly dynamic procedure which does not require test filtering. The proposed method is based on Taylor series expansions of the resolved velocity fields. Accuracy is governed by the derivative schemes used in the calculation and the number of terms considered in the approximation to the test filtering operator. The expansion is developed up to fourth order, and results are tested a priori based on direct numerical simulation data of forced isotropic turbulence in the context of the dynamic Smagorinsky model. The tests compare the dynamic Smagorinsky coefficient obtained from filtering with those obtained from application of the Taylor series expansion. They show that the expansion up to second order provides a reasonable approximation to the true dynamic coefficient (with errors on the order of about 5% for c s 2), but that including higher-order terms does not necessarily lead to improvements in the results due to inherent limitations in accurately evaluating high-order derivatives. A posteriori tests using the Taylor series approximation in LES of forced isotropic turbulence and channel flow confirm that the Taylor series approximation yields accurate results for the dynamic coefficient. Moreover, the simulations are stable and yield accurate resolved velocity statistics. Received 20 February 2001 and accepted 24 July 2001  相似文献   

13.
A newly developed fractal dynamic SGS (FDSGS) combustion model and a scale self-recognition mixed (SSRM) SGS stress model are evaluated along with other SGS combustion, scalar flux and stress models in a priori and a posteriori manners using DNS data of a hydrogen-air turbulent plane jet premixed flame. A posteriori tests reveal that the LES using the FDSGS combustion model can predict the combustion field well in terms of mean temperature distributions and peak positions in the transverse distributions of filtered reaction progress variable fluctuations. A priori and a posteriori tests of the scalar flux models show that a model proposed by Clark et al. accurately predicts the counter-gradient transport as well as the gradient diffusion, and introduction of the model of Clark et al. into the LES yields slightly better predictions of the filtered progress variable fluctuations than that of a gradient diffusion model. Evaluations of the stress models reveal that the LES with the SSRM model predicts the velocity fluctuations well compared to that with the Smagorinsky model.  相似文献   

14.
An investigation of large-eddy simulation (LES) for turbulent channel flow with buoyancy effects was performed by solving the resolved incompressible Navier-Stokes equations under the Boussinesq approximation. The Smagorinsky eddy-viscosity model and Yoshizawa eddy-viscosity model were used to describe the unresolved subgrid scale (SGS) fluctuations respectively. After some numerical testing, the latter was further simplified so that it can be used in the dynamic model closure. A LES code was developed for parallel computations by using the parallel technique, and was run on the Dawn-1000 parallel computer. To demonstrate the viability and accuracy of the code, our results are compared with and found in good agreement with available LES results. The project supported by the National Natural Science Foundation of China and by the Youngster Funding of Academia Sinica  相似文献   

15.
A computational study of a high‐fidelity, implicit large‐eddy simulation (ILES) technique with and without the use of the dynamic Smagorinsky subgrid‐scale (SGS) model is conducted to examine the contributions of the SGS model on solutions of transitional flow over the SD7003 airfoil section. ILES without an SGS model has been shown in the past to produce comparable and sometimes favorable results to traditional SGS‐based large‐eddy simulation (LES) when applied to canonical turbulent flows. This paper evaluates the necessity of the SGS model for low‐Reynolds number airfoil applications to affirm the use of ILES without SGS‐modeling for a broader class of problems such as those pertaining to micro air vehicles and low‐pressure turbines. It is determined that the addition of the dynamic Smagorinsky model does not significantly affect the time‐mean flow or statistical quantities measured around the airfoil section for the spatial resolutions and Reynolds numbers examined in this study. Additionally, the robustness and reduced computational cost of ILES without the SGS model demonstrates the attractiveness of ILES as an alternative to traditional LES. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

16.
吴磊  肖左利 《力学学报》2021,53(10):2667-2681
亚格子(SGS)应力建模在湍流大涡模拟(LES)中有着极为重要的作用. 传统亚格子应力模型存在相对误差较大、耗散过强等问题. 近年来, 计算机技术的发展使得人工神经网络(ANN)等机器学习方法逐渐成为亚格子应力建模型的新研究范式. 本文着重考虑滤波宽度及雷诺数影响, 在不可压缩槽道湍流中建立了亚格子应力的ANN模型. 该模型以滤波后的直接数值模拟(fDNS)流场物理量及滤波尺度为输入信息, 相应滤波尺度下的亚格子应力为输出量. 通过对不同滤波尺度及不同雷诺数数据的训练, ANN模型能够给出与直接数值模拟(DNS)高度吻合的亚格子应力. 此外, 模型在亚格子耗散等非ANN建模量上也有着优异的预测性能, 与基于DNS获得的对应物理量的相关系数大都在0.9以上, 较梯度模型及Smagorinsky模型有明显提升. 在后验测试中, ANN模型对流向平均速度剖面的预测同样优于梯度模型、Smagorinsky模型及隐式大涡模拟(ILES)等传统LES模型. 在脉动速度均方根预测方面, 除了某些法向位置外ANN模型的性能整体上相对其他3个模型有所提升. 然而, 随着网格尺度的增大ANN模型预测的结果与fDNS结果的偏差逐渐增大. 总之, ANN方法在发展高精度亚格子应力模型上具有很大的潜力.   相似文献   

17.
霍岩  郜冶 《计算力学学报》2013,30(1):117-123
利用基于Vreman亚格子模型的大涡模拟技术对有开口的单室和双室房间内热驱动流进行了数值模拟,利用函数分析法定量分析了模拟结果的准确性,并与Smagorinsky亚格子模型的模拟结果进行了比较.结果表明,Vreman和Smagorinsky亚格子模型的计算结果均能够满足工程的需求,但Vreman亚格子模型在开口附近区域的温度和U速度计算结果在整体上比Smagorinsky亚格子模型更接近实验值;Vreman亚格子模型未像Sma-gorinsky亚格子模型那样过高地估算壁面附近高温区域的粘性耗散;对于单室房间内热烟气层高度的预测,采用Vreman模型得到的计算结果准确性比Smagorinsky亚格子模型提高近50%.  相似文献   

18.
Large eddy simulations of a three-dimensional turbulent thermal plume in an open environment have been carried out using a self-developed parallel computational fluid dynamics code SMAFS (smoke movement and flame spread) to study the thermal plume’s dynamics including its puffing, self-preserving and air entrainment. In the simulation, the sub-grid stress was modeled using both the standard Smagorinsky and the buoyancy modified Smagorinsky models, which were compared. The sub-grid scale (SGS) scalar flux in the filtered enthalpy transport equation was modeled based on a simple gradient transport hypothesis with constant SGS Prandtl number. The effect of the Smagorinsky model constant and the SGS Prandtl number were examined. The computation results were compared with experimental measurements, thermal plume theory and empirical correlations, showing good agreement. It is found that both the buoyancy modification and the SGS turbulent Prandtl number have little influence on simulation. However, the SGS model constant C s has a significant effect on the prediction of plume spreading, although it does not affect much the prediction of puffing.  相似文献   

19.
This paper presents results of a large eddy simulation (LES) combined with Lagrangian particle tracking and a point-force approximation for the feedback effect of particles on the downward turbulent gaseous flow in a vertical channel. The LES predictions are compared with the results obtained by direct numerical simulation (DNS) of a finer computational mesh. A parametric study is conducted for particles with two response times in simulations with and without streamwise gravitational settling and elastic, binary interparticle collisions. It is shown that the classical and the dynamic Smagorinsky turbulence models adequately predict the particle-induced changes in the mean streamwise velocity and the Reynolds stresses of the carrier phase for the range of parameters studied. However, the largest discrepancies between the LES and DNS results are found in the cases of particle-laden flows. Conditional sampling of the instantaneous resolved flow fields indicates that the mechanisms by which particles directly oppose the production of momentum and vorticity of the organized fluid motions are also observed in the LES results. However, the geometric features of the near-wall quasistreamwise vortices are overestimated by the use of both turbulence models compared to the DNS predictions.  相似文献   

20.
Numerous comparisons between Reynolds‐averaged Navier–Stokes (RANS) and large‐eddy simulation (LES) modeling have already been performed for a large variety of turbulent flows in the context of fully deterministic flows, that is, with fixed flow and model parameters. More recently, RANS and LES have been separately assessed in conjunction with stochastic flow and/or model parameters. The present paper performs a comparison of the RANS k ? ε model and the LES dynamic Smagorinsky model for turbulent flow in a pipe geometry subject to uncertain inflow conditions. The influence of the experimental uncertainties on the computed flow is analyzed using a non‐intrusive polynomial chaos approach for two flow configurations (with or without swirl). Measured quantities including an estimation of the measurement error are then compared with the statistical representation (mean value and variance) of their RANS and LES numerical approximations in order to check whether experiment/simulation discrepancies can be explained within the uncertainty inherent to the studied configuration. The statistics of the RANS prediction are found in poor agreement with experimental results when the flow is characterized by a strong swirl, whereas the computationally more expensive LES prediction remains statistically well inside the measurement intervals for the key flow quantities.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号