首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A numerical study of unsteady single-phase vortical flow inside a cyclone is presented. Two different geometric configurations have been considered, with the goal of assessing several different turbulence modelling approaches for this class of problem. The models investigated include three Reynolds-averaged Navier–Stokes models: a commonly used two-equation eddy-viscosity model, a differential Reynolds stress model (DRSM) and an eddy-viscosity model sensitised to rotational and curvature (RC) effects which was recently developed and implemented into a commercial CFD (computational fluid dynamics) code by the authors. Results were also obtained using large eddy simulation (LES). The computational results are analysed and compared with available experimental data. The RC-sensitised eddy-viscosity model shows significant improvement over the standard eddy-viscosity model. The RC-sensitised model, DRSM and LES model predictions of the mean flowfield are in good agreement with the experimental data. The results suggest that curvature- and rotation-sensitive eddy-viscosity models may provide a practical alternative to more computationally intensive approaches.  相似文献   

2.
The major conclusion of this paper is that resolution requirements for large-eddy simulation (LES) of flow separation and reattachment can be significantly reduced using the anisotropy-capturing explicit algebraic subgrid-scale (SGS) stress model (EASSM) of Marstorp et al. (J. Fluid Mech., vol. 639, 2009, pp. 403–432), instead of the conventional isotropic dynamic eddy-viscosity model (DEVM). LES of flow separation in a channel with streamwise periodic hill-shaped constrictions and spanwise homogeneity is performed at coarse resolutions for which it is observed that flow separation cannot be predicted without a SGS model and cannot be correctly predicted by the DEVM, while reasonable predictions are obtained with the EASSM. It is shown that the lower resolution requirements by the EASSM, compared to the DEVM, is not only due its nonlinear formulation, but also due to the better formulation of its eddy-viscosity part. The improvements obtained with the EASSM have previously been demonstrated using higher-order numerical solvers for channel flows. In this study, it is observed that these improvements still remain using a low-order code with significant inherent numerical dissipation.  相似文献   

3.
We compare the space-time correlations calculated from direct numerical simulation(DNS) and large-eddy simulation(LES) of turbulent channel flows.It is found from the comparisons that the LES with an eddy-viscosity subgrid scale(SGS) model over-predicts the space-time correlations than the DNS.The overpredictions are further quantified by the integral scales of directional correlations and convection velocities.A physical argument for the overprediction is provided that the eddy-viscosity SGS model alone does not includes the backscatter effects although it correctly represents the energy dissipations of SGS motions.This argument is confirmed by the recently developed elliptic model for space-time correlations in turbulent shear flows.It suggests that enstrophy is crucial to the LES prediction of spacetime correlations.The random forcing models and stochastic SGS models are proposed to overcome the overpredictions on space-time correlations.  相似文献   

4.
Large-eddy simulations (LES) still suffer from extremely large resources required for the resolution of the near-wall region, especially for high-Re flows. That is the main motivation for setting up hybrid LES–RANS methods. Meanwhile a variety of different hybrid concepts were proposed mostly relying on linear eddy-viscosity models. In the present study a hybrid approach based on an explicit algebraic Reynolds stress model (EARSM) is suggested. The model is applied in the RANS mode with the aim of accounting for the Reynolds stress anisotropy emerging especially in the near-wall region. For the implementation into a CFD code this anisotropy-resolving closure can be formally expressed in terms of a non-linear eddy-viscosity model (NLEVM). Its extra computational effort is small, still requiring solely the solution of one additional transport equation for the turbulent kinetic energy. In addition to this EARSM approach, a linear eddy-viscosity model (LEVM) is used in order to verify and emphasize the advantages of the non-linear model. In the present formulation the predefinition of RANS and LES regions is avoided and a gradual transition between both methods is assured. A dynamic interface criterion is suggested which relies on the modeled turbulent kinetic energy and the wall distance and thus automatically accounts for the characteristic properties of the flow. Furthermore, an enhanced version guaranteeing a sharp interface is proposed. The interface behavior is thoroughly investigated and it is shown how the method reacts on dynamic variations of the flow field. Both model variants, i.e. LEVM and EARSM, have been tested on the basis of the standard plane channel flow and even more detailed on the flow over a periodic arrangement of hills using fine and coarse grids.  相似文献   

5.
A large-eddy simulation (LES) technique has been used for the calculation of an air flow past a heated square cylinder. The LES method is a conventional one with the Smagorinsky eddy-viscosity model, and the computational grid is small enough to be handled by workstations. The computed turbulent flow field quantities agree well with the experimental results reported by Lyn et al. (J Fluid Mech 304:285–319, 1995). Particular attention has been spent to the convective heat transfer and the prediction of the thermal fluctuations in case of a fluid with Pr = 0.71. The LES results agree well with the empirical correlations proposed by Hilpert and Sparrow et al. for the average Nusselt number.  相似文献   

6.
Large-eddy simulation (LES) of turbulent combustion with premixed flamelets is investigated in this paper. The approach solves the filtered Navier–Stokes equations supplemented with two transport equations, one for the mixture fraction and another for a progress variable. The LES premixed flamelet approach is tested for two flows: a premixed preheated Bunsen flame and a partially premixed diffusion flame (Sandia Flame D). In the first case, we compare the LES with a direct numerical simulation (DNS). Four non-trivial models for the chemical source term are considered for the Bunsen flame: the standard presumed beta-pdf model, and three new propositions (simpler than the beta-pdf model): the filtered flamelet model, the shift-filter model and the shift-inversion model. A priori and a posteriori tests are performed for these subgrid reaction models. In the present preheated Bunsen flame, the filtered flamelet model gives the best results in a priori tests. The LES tests for the Bunsen flame are limited to a case in which the filter width is only slightly larger than the flame thickness. According to the a posteriori tests the three models (beta-pdf, filtered flamelet and shift-inversion) show more or less the same results as the trivial model, in which subgrid reaction effects are ignored, while the shift-filter model leads to worse results. Since LES needs to resolve the large turbulent eddies, the LES filter width is bounded by a maximum. For the present Bunsen flame this means that the filter width should be of the order of the flame thickness or smaller. In this regime, the effects of subgrid reaction and subgrid flame wrinkling turn out to be quite modest. The LES-results of the second case (Sandia Flame D) are compared to experimental data. Satisfactory agreement is obtained for the main species. Comparison is made between different eddy-viscosity models for the subgrid turbulence, and the Smagorinsky eddy-viscosity is found to give worse results than eddy-viscosities that are not dominated by the mean shear. Paper presented on the Eccomas Thematic Conference Computational Combustion 2007, submitted for a special issue of Flow, Turbulence and Combustion.  相似文献   

7.
Although Large Eddy Simulation (LES) is identified today as the most promising method for turbulent flow problems, few applications of LES coupled to heat transfer solvers in solids have been published. This paper describes a coupling strategy of a LES solver and a heat transfer code within solids on parallel architectures. The numerical methods used in both solvers are briefly recalled before discussing the coupling strategy in terms of physical quantities to exchange (fluxes and temperatures), stability and parallel efficiency. The stability study is performed using an amplification matrix analysis on a one-dimensional case and allows the determination and optimization of coupling parameters. The coupled tool is then applied to a cooled turbine blade model where results demonstrate both the efficiency of the parallel implementation and the quality of the results. Coupled and non-coupled simulations are compared to experimental results and discussed in terms of cooling efficiency and flow structures.  相似文献   

8.
This paper presents results from numerical simulations of a 3-bladed horizontal axis tidal stream turbine. Initially, Reynolds Averaged Navier Stokes (RANS) k–ω Shear Stress Transport eddy-viscosity and Launder–Reece–Rodi models were used for code validation and testing of a newly implemented sliding mesh technique for an unstructured finite volume code. Wall- and blade-resolved large-eddy simulations (LES) were then performed to study the complete geometry at various tip speed ratios (TSR). Thrust and power coefficients were compared to published experimental measurements obtained from a towing tank for a range of TSR (4, 5, 6, 7, 8, 9 and 10) at a fixed hub pitch angle. A strong meandering is observed downstream of the supporting tower due to interaction between the detached tip vortices and vortex shedding from the support structure. The wake profiles and rate of recovery of velocity deficit show high sensitivity to the upstream turbulence intensities. However, the mean thrust and power coefficients were found to be less sensitive to the upstream turbulence. Comparisons between RANS and LES are also presented for the mean sectional blade pressures and mean wake velocity profiles. The paper also presents an overview of modelling and numerical issues relating to simulations for such rotating geometries.  相似文献   

9.
在湍流数值模拟方法中,大涡模拟方法可以提供丰富的大涡旋信息,已逐渐成为复杂湍流问题数值研究的重要方法。而大涡模拟中,最重要的一环是尽量准确地构建能反映流场物理本质特征的亚格子应力模型。基于该思想,将一种新型的大涡模拟亚格子应力模型-Vreman亚格子应力模型用于高雷诺数三维后台阶流动的求解,计算结果与实验结果进行对比分析结果较吻合,验证了该模型的可靠性。这是对该模型用于无任何均匀流动方向的高雷诺数复杂湍流非定常流动的首次检验,计算结果优于基于传统的Smagorinsky涡粘性的动态亚格子模型。  相似文献   

10.
A new large eddy simulation (LES) approach for particle-laden turbulent flows in the framework of the Eulerian formalism for inertial particle statistical modelling is developed. Local instantaneous Eulerian equations for the particle cloud are first written using the mesoscopic Eulerian formalism (MEF) proposed by Février et al. (J Fluid Mech 533:1–46, 2005), which accounts for the contribution of an uncorrelated velocity component for inertial particles with relaxation time larger than the Kolmogorov time scale. Second, particle LES equations are obtained by volume filtering the mesoscopic Eulerian ones. In such an approach, the particulate flow at larger scales than the filter width is recovered while sub-grid effects need to be modelled. Particle eddy-viscosity, scale similarity and mixed sub-grid stress (SGS) models derived from fluid compressible turbulence SGS models are presented. Evaluation of such models is performed using three sets of particle Lagrangian results computed from discrete particle simulation (DPS) coupled with fluid direct numerical simulation (DNS) of homogeneous isotropic decaying turbulence. The two phase flow regime corresponds to the dilute one where two-way coupling and inter-particle collisions are not considered. The different particle Stokes number (based on Kolmogorov time scale) are initially equal to 1, 2.2 and 5.1. The mesoscopic field properties are analysed in detail by considering the particle velocity probability function (PDF), correlated velocity power spectra and random uncorrelated velocity moments. The mesoscopic fields measured from DPS+DNS are then filtered to obtain large scale fields. A priori evaluation of particle sub-grid stress models gives comparable agreement than for fluid compressible turbulence models. It has been found that the standard Smagorinsky eddy-viscosity model exhibits the smaller correlation coefficients, the scale similarity model shows very good correlation coefficient but strongly underestimates the sub-grid dissipation and the mixed model is on the whole superior to pure eddy-viscosity model.  相似文献   

11.
Regularization models for the turbulent stress tensor are applied to mixing and separated boundary layers. The Leray and the NS-α models in large-eddy simulation (LES) are compared to direct numerical simulation (DNS) and (dynamic) eddy-viscosity models. These regularization models are at least as accurate as the dynamic eddy-viscosity model, and can be derived from an underlying dynamic principle. This allows one to maintain central transport properties of the Navier-Stokes equations in the model and to extend systematically toward complex applications. The NS-α model accurately represents the small-scale variability, albeit at considerable resolution. The Leray model was found to be much more robust, allowing simulations at high Reynolds number. Leray simulations of a separated boundary layer are shown for the first time. The strongly localized transition to turbulence that arises under a blowing and suction region over a flat plate was captured accurately, quite comparable to the dynamic model. In contrast, results obtained with the Smagorinsky model, either with or without Van Driest damping, yield considerable errors, due to its excessive dissipation.  相似文献   

12.
可压缩自由剪切流混合转捩大涡模拟   总被引:3,自引:2,他引:1  
针对湍流气动光学效应与冲压发动机气体混合机理问题,开展了可压缩混合层流动空间模式大涡模拟和时间模式直接数值模拟研究.通过对流场(包含亚/亚混合、超/亚混合两种情况)失稳、转捩直至完全湍流的空间发展过程的研究表明,对流Mach数0.4状态下流场失稳以二维最不稳定扰动为主;非线性发展中,基频涡对并及展向涡撕裂主控流动转捩,流场发生混合转捩;转捩后脉动流场基本达到局部各向同性,此时,湍流Mach数低于0.3,流动压缩性可近似忽略.  相似文献   

13.
A new subgrid-scale model called the spectral-dynamic model is proposed. It consists of a refinement of spectral eddy-viscosity models taking into account nondeveloped turbulence in the subgrid-scales. The proposed correction, which is derived from eddy-damped quasi-normal Markovian statistical theory, is based on an adjustment of the turbulent eddy-viscosity coefficient to the deviation of the spectral slope (at small scales) with respect to the standard Kolmogorov law. The spectral-dynamic model is applied to large eddy simulation (LES) of rotating and nonrotating turbulent plane channel flows. It is shown that the proposed refinement allows for clear improvement of the statistical predictions due to a correct prediction of the near-wall behavior. Cases of rotating and nonrotating low (DNS) and high Reynolds (LES) numbers are then compared. It is shown that the principal structural features of the rotating turbulent channel flow are reproduced by the LES, such as the presence of the near-zero mean absolute vorticity region, the modification of the anisotropic character of the flow (with respect to the nonrotating case), the enhancement of flow organization, and the inhibition of the high- and low-speed streaks near the anticyclonic wall. Only a moderate Reynolds number dependence is exhibited, resulting in a more unstable character of the longitudinal large-scale roll cells at high Reynolds number, and a slight increase of the laminarization tendency on the cyclonic side of the channel. Received 16 October 1997 and accepted 1 October 1998  相似文献   

14.
A turbulent piloted methane/air diffusion flame (Sandia Flame D) is calculated using both compressible Reynolds-averaged and large-eddy simulations (RAS and LES, respectively). The Eddy Dissipation Concept (EDC) is used for the turbulence-chemistry interaction, which assumes that molecular mixing and the subsequent combustion occur in the fine structures (smaller dissipative eddies, which are close to the Kolmogorov length scales). Assuming the full turbulence energy cascade, the characteristic length and velocity scales of the fine structures are evaluated using a standard k- ?? turbulence model for RAS and a one-equation eddy-viscosity sub-grid scale model for LES. Finite-rate chemical kinetics are taken into account by treating the fine structures as constant pressure and adiabatic homogeneous reactors (calculated as a system of ordinary-differential equations (ODEs)) described by a Perfectly Stirred Reactor (PSR) concept. A robust implicit Runge-Kutta method (RADAU5) is used for integrating stiff ODEs to evaluate reaction rates. The radiation heat transfer is treated by the P1-approximation. The assumed β-PDF approach is applied to assess the influence of modeling of the turbulence-chemistry interaction. Numerical results are compared with available experimental data. In general, there is good agreement between present simulations and measurements both for RAS and LES, which gives a good indication on the adequacy and accuracy of the method and its further application for turbulent combustion simulations.  相似文献   

15.
A Large Eddy Simulation (LES) of turbulent flow over an airfoil near stall is performed. Results of the LES are compared with those of Reynolds-Averaged Navier-Stokes (RANS) simulations using two well-known turbulence models, namely the Baldwin-Lomax model and the Spalart-Allmaras model. The subgrid scale model used for the LES is the filtered structure function model. All simulations are performed using the same structured multi-block code. In order to reduce the CPU time, an implicit time stepping method is used for the LES. The purpose of this study is to show the possibilities and limitations of LES of complex flows associated with aeronautical applications using state of the art simulation techniques. Typical flow features are captured by the LES such as the adverse-pressure gradient and flow retardation. Visualization of instantaneous flow fields shows the typical streaky structures in the near-wall region.  相似文献   

16.
ABSTRACT

The side-wind loading on a simplified train model at scale 1:25 is investigated by parallel large eddy simulation (LES) with incompressible solvers from the OpenFOAM package and a novel dynamically adaptive, parallel LES-type lattice Boltzmann method (LBM) implemented in our own AMROC framework. It is found that the new LBM code provides more accurate time-averaged force predictions, while compute times are reduced.  相似文献   

17.
A program incorporating the parallel code of large eddy simulation (LES) and particle transportation model is developed to simulate the motion of particles in an atmospheric turbulent boundary layer (ATBL). A model of particles of 100-micrometer order coupling with large scale ATBL is proposed. Two typical cases are studied, one focuses on the evolution of particle profile in the ATBL and the landing displacement of particles, whereas the other on the motion of particle stream.The English text was polished by Yunming Chen.  相似文献   

18.
We first review the state-of-the art in direct numerical simulation and present a new class of spectral methods on unstructured grids for handling complex-geometry domains. Subsequently, we concentrate on the classical problem of the turbulent wake behind a circular cylinder and compare the accuracy of spectral DNS versus other LES results available in the literature. We find that DNS provides consistent agreement with the experimental results, but that LES predictions are inconsistent and depend strongly on the interaction between numerical discretization and the subgrid model. We also demonstrate via a simple vorticity-based analysis of the turbulent near-wake that eddy-viscosity models are inappropriate for sudgrid modeling. In contrast, preliminary a priori tests suggest that scale-similarity models may be a good candidate. We close the paper by forecasting the use of dynamic DNS and comment on its role in simulating turbulence in complex geometries.  相似文献   

19.
The accuracy of large-eddy simulation (LES) of a turbulent premixed Bunsen flame is investigated in this paper. To distinguish between discretization and modeling errors, multiple LES, using different grid sizes h but the same filterwidth Δ, are compared with the direct numerical simulation (DNS). In addition, LES using various values of Δ but the same ratio Δ/h are compared. The chemistry in the LES and DNS is parametrized with the standard steady premixed flamelet for stochiometric methane-air combustion. The subgrid terms are closed with an eddy-viscosity or eddy-diffusivity approach, with an exception of the dominant subgrid term, which is the subgrid part of the chemical source term. The latter subgrid contribution is modeled by a similarity model based upon 2Δ, which is found to be superior to such a model based upon Δ. Using the 2Δ similarity model for the subgrid chemistry the LES produces good results, certainly in view of the fact that the LES is completely wrong if the subgrid chemistry model is omitted. The grid refinements of the LES show that the results for Δ = h do depend on the numerical scheme, much more than for h = Δ/2 and h = Δ/4. Nevertheless, modeling errors and discretization error may partially cancel each other; occasionally the Δ = h results were more accurate than the h ≤ Δ results. Finally, for this flame LES results obtained with the present similarity model are shown to be slightly better than those obtained with standard β-pdf closure for the subgrid chemistry.  相似文献   

20.
包芸  习令楚 《力学学报》2020,52(3):656-662
在环境流体力学中,风场是风沙流、风雪流等自然环境特性问题研究的动力源和基础. 通常采用壁湍流模型进行风场大涡模拟(large eddy simulation, LES)计算,但受到计算规模的限制使得 高雷诺数风场的模拟计算难以实现. 并行计算技术是解决大规模高雷诺数风场大涡模拟的关键技术之一. 在不可压湍流风场的LES模拟中,压力泊松方程的并行计算技术是进行规模并行计算的困难点. 根据风场流动模拟计算的特点,采用水平网格等距而垂直于地面网格非等距,在解决规模并行计算中求解压力泊松方程的难点问题时,利用FFT解耦三维泊松方程使其变为垂向的一维三对角方程, 并利用可并行的三对角方程PDD求解技术,可建立三维泊松方程的直接并行求解技术. 结合其它容易并行的动量方程计算,本文建立风场LES模拟的并行直接求解方法(parallel direct method-LES, PDM-LES). 在超级计算机上对新方法进行并行效率测试,并行计算效率达到90${\%}$. 新的方法可用于进行湍流风场大涡模拟的大规模并行计算. 计算结果表明,湍流风场瞬时速度分布近壁面存在条带状的拟序结构,平均场的速度分布符合速度对数律特性,风场湍流特性基本合理.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号