首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 439 毫秒
1.
The bifurcation mechanism of bursting oscillations in a three-dimensional autonomous slow-fast Kingni et al. system (Nonlinear Dyn. 73, 1111–1123, 2013) and its fractional-order form are investigated in this paper. The stability analysis of the system is carried out assuming that the slow subsystem evolves on quasi-static state. It is reveaved that the bursting oscillations found in the system result from the system switching between the unstable and the stable states of the only equilibrium point of the fast subsystem. We refer this class of bursting to “source/bursting.” The coexistence of symmetrical bursting limit cycles and chaotic bursting attractors is observed. In addition, the fractional-order chaotic slow-fast system is studied. The lowest order of the commensurate form of this system to exhibit chaotic behavior is found to be 2.199. By tuning the commensurate fractional-order, the chaotic slow-fast system displays Chen- and Lorenz-like chaotic attractors, respectively. The stability analysis of the controlled fractional-order-form of the system to its equilibria is undertaken using Routh–Hurwitz conditions for fractional-order systems. Moreover, the synchronization of chaotic bursting oscillations in two identical fractional-order systems is numerically studied using the unidirectional linear error feedback coupling scheme. It is shown that the system can achieve synchronization for appropriate coupling strength. Furthermore, the effect of fractional derivatives orders on chaos control and synchronization is analyzed.  相似文献   

2.
In this paper, we construct a novel four dimensional fractional-order chaotic system. Compared with all the proposed chaotic systems until now, the biggest difference and most attractive place is that there exists no equilibrium point in this system. Those rigorous approaches, i.e., Melnikov??s and Shilnikov??s methods, fail to mathematically prove the existence of chaos in this kind of system under some parameters. To reconcile this awkward situation, we resort to circuit simulation experiment to accomplish this task. Before this, we use improved version of the Adams?CBashforth?CMoulton numerical algorithm to calculate this fractional-order chaotic system and show that the proposed fractional-order system with the order as low as 3.28 exhibits a chaotic attractor. Then an electronic circuit is designed for order q=0.9, from which we can observe that chaotic attractor does exist in this fractional-order system. Furthermore, based on the final value theorem of the Laplace transformation, synchronization of two novel fractional-order chaotic systems with the help of one-way coupling method is realized for order q=0.9. An electronic circuit is designed for hardware implementation to synchronize two novel fractional-order chaotic systems for the same order. The results for numerical simulations and circuit experiments are in very good agreement with each other, thus proving that chaos exists indeed in the proposed fractional-order system and the one-way coupling synchronization method is very effective to this system.  相似文献   

3.
This paper introduces a fractional order system which can generate regular oscillations or create chaos. It shows that this system is capable to create regular or nonregular oscillations under suitable conditions. These necessary conditions are achieved by violation of the no-chaos criteria. The effective dimension of the proposed system can be chosen any order less than three. Therefore, this system is a good example for limit cycle or chaos generation via fractional-order systems with low orders. Numerical simulations illustrate behavior of the proposed system in different situations.  相似文献   

4.
Based on Rikitake system, a new chaotic system is discussed. Some basic dynamical properties, such as equilibrium points, Lyapunov exponents, fractal dimension, Poincaré map, bifurcation diagrams and chaotic dynamical behaviors of the new chaotic system are studied, either numerically or analytically. The obtained results show clearly that the system discussed is a new chaotic system. By utilizing the fractional calculus theory and computer simulations, it is found that chaos exists in the new fractional-order three-dimensional system with order less than 3. The lowest order to yield chaos in this system is 2.733. The results are validated by the existence of one positive Lyapunov exponent and some phase diagrams. Further, based on the stability theory of the fractional-order system, projective synchronization of the new fractional-order chaotic system through designing the suitable nonlinear controller is investigated. The proposed method is rather simple and need not compute the conditional Lyapunov exponents. Numerical results are performed to verify the effectiveness of the presented synchronization scheme.  相似文献   

5.
A fractional-order (FO) nonlinear model is used to describe an electromechanical system. We make capital out of the fact that for realistic modeling, the electric characteristics of a capacitor include a fractional-order time derivative. The dynamics and synchronization of coupled fractional-order nonlinear electromechanical systems are analyzed. Detailed attention is granted to the bifurcations that can occur in the dynamics of a single uncoupled electromechanical system as the fractional-order varies. For example, the fractional-order counterparts of the chaotic 4-order system are periodic at orders less than 3.985. The effect of the fractional-order on the condition of occurrence of synchronization phenomena in the network of many mutually coupled fractional-order nonlinear electromechanical systems is analyzed, especially when they are chaotic. An insight on the overall dynamics of the network is provided. It is shown that the dynamics of both the uncoupled system and the network are very sensitive to changes in the order of the fractional derivative.  相似文献   

6.
In this paper, we focus on the synchronization between integer-order chaotic systems and a class of fractional-order chaotic system using the stability theory of fractional-order systems. A new fuzzy sliding mode method is proposed to accomplish this end for different initial conditions and number of dimensions. Furthermore, three examples are presented to illustrate the effectiveness of the proposed scheme, which are the synchronization between a fractional-order chaotic system and an integer-order Liu chaotic system, the synchronization between a fractional-order hyperchaotic system based on Chen??s system and an integer-order hyperchaotic system based upon the Lorenz system, and the synchronization between a fractional-order hyperchaotic system based on Chen??s system, and an integer-order Liu chaotic system. Finally, numerical results are presented and are in agreement with theoretical analysis.  相似文献   

7.
This paper introduces two novel fractional-order chaotic systems with cubic nonlinear resistor and investigates its adaptive sliding mode synchronization. Firstly the novel two equilibrium chaotic system with cubic nonlinear resistor (NCCNR) is derived and its dynamic properties are investigated. The fractional-order cubic nonlinear resistor system (FONCCNR) is then derived from the integer-order model and its stability and fractional-order bifurcation are discussed. Next a novel no-equilibrium chaotic cubic nonlinear resistor system (NECNR) is derived from NCCNR system. Dynamic properties of NECNR system are investigated. The fractional-order no equilibrium cubic nonlinear resistor system (FONECNR) is derived from NECNR. Stability and fractional-order bifurcation are investigated for the FONECNR system. The non-identical adaptive sliding mode synchronization of FONCCNR and FONECNR systems are achieved. Finally the proposed systems, adaptive control laws, sliding surfaces and adaptive controllers are implemented in FPGA.  相似文献   

8.
This paper presents some novel discussions on fully decentralized and semi-decentralized control of fractional-order large-scale nonlinear systems with two distinctive fractional derivative dynamics. First, two decentralized fractional-order sliding mode controllers with different sliding surfaces are designed. Stability of the closed-loop systems is attained under the assumption that the uncertainties and interconnections among the subsystems are bounded, and the upper bound is known. However, determining the interconnections and uncertainties bound in a large-scale system is troublesome. Therefore in the second step, two different fuzzy systems with adaptive tuning structures are utilized to approximate the interconnections and uncertainties. Since the fuzzy system uses the adjacent subsystem variables as its own input, this strategy is known as semi-decentralized fractional-order sliding mode control. For both fully decentralized and semi-decentralized control schemes, the stability of closed-loop systems has been analyzed depend on the sliding surface dynamics by integer-order or fractional-order stability theorems. Eventually, simulation results are presented to illustrate the effectiveness of the suggested robust controllers.  相似文献   

9.
This paper deals with a class of three-dimensional autonomous nonlinear systems which have potential applications in secure communications, and investigates the localization problem of compact invariant sets of a class of Lorenz-like chaotic systems which contain T system with the help of iterative theorem and Lyapunov function theorem. Since the Lorenz-like chaotic system does not have y in the second equation, the approach used to the Lorenz system cannot be applied to the Lorenz-like chaotic system. We overcome this difficulty by introducing a cross term and get an interesting result, which includes the most interesting case of the chaotic attractor of the Lorenz-like systems. Furthermore, the results obtained in this paper are applied to study complete chaos synchronization. Finally, numerical simulations show the effectiveness of the proposed scheme.  相似文献   

10.
In this paper, we consider an observer-based control approach for manipulating projective synchronization of nonlinear systems in high dimensional. Based on the stability theory of the fractional-order dynamical system, a nonlinear state observer is designed which can achieve projective synchronization in a class of high dimensional fractional-order hyperchaotic systems without restriction of partial-linearity and calculating the Lyapunov index of system. Simulation studies are included to demonstrate the effectiveness and feasibility of the proposed approach and synthesis procedures.  相似文献   

11.
This article examines the synchronization performance between two fractional-order systems, viz., the Ravinovich?CFabrikant chaotic system as drive system and the Lotka?CVolterra system as response system. The chaotic attractors of the systems are found for fractional-order time derivatives described in Caputo sense. Numerical simulation results which are carried out using Adams?CBoshforth?CMoulton method show that the method is reliable and effective for synchronization of nonlinear dynamical evolutionary systems. Effects on synchronization time due to the presence of fractional-order derivative are the key features of the present article.  相似文献   

12.
The asymptotic stability and stabilization problem of a class of fractional-order nonlinear systems with Caputo derivative are discussed in this paper. By using of Mittag–Leffler function, Laplace transform, and the generalized Gronwall inequality, a new sufficient condition ensuring local asymptotic stability and stabilization of a class of fractional-order nonlinear systems with fractional-order α:1<α<2 is proposed. Then a sufficient condition for the global asymptotic stability and stabilization of such system is presented firstly. Finally, two numerical examples are provided to show the validity and feasibility of the proposed method.  相似文献   

13.
This study aims to reveal the laws of the relationship between fractional-order system and integer-order system. Meanwhile, delayed feedback control is introduced to control the fractional-order PMSG (permanent magnet synchronous generator) model of a wind turbine. First, the fractional-order mathematical model of PMSG is established. Next, numerical simulations under different system orders are given and the system dynamic behaviors are analyzed in detail. Then, the delayed feedback control method is introduced to control the fractional-order PMSG and the control results when different parameters vary are analyzed. Complex dynamics are presented and some interesting phenomena are discovered. It is found that the system order influences the dynamics of the system in many aspects such as chaos pattern, bifurcation behavior, period window, shape and size of strange attractor. The delayed time, feedback gain, feedback limitation, system order can obviously influence the control result except the initial state of the system. Moreover, the feedback limitation has a minimum to successfully control the system to stable states and the system order also has a maximum to do so.  相似文献   

14.
In this paper, we numerically investigate the hyperchaotic behaviors in the fractional-order Chen hyperchaotic systems. By utilizing the fractional calculus techniques, we find that hyperchaos exists in the fractional-order Chen hyperchaotic system with the order less than 4. We found that the lowest order for hyperchaos to have in this system is 3.72. Our results are validated by the existence of two positive Lyapunov exponents. The generalized projective synchronization method is also presented for synchronizing the fractional-order Chen hyperchaotic systems. The present technique is based on the Laplace transform theory. This simple and theoretically rigorous synchronization approach enables synchronization of fractional-order hyperchaotic systems to be achieved and does not require the computation of the conditional Lyapunov exponents. Numerical simulations are performed to verify the effectiveness of the proposed synchronization scheme.  相似文献   

15.
In this paper we numerically investigate the fractional-order sliding-mode control for a novel fractional-order hyperchaotic system. Firstly, the dynamic analysis approaches of the hyperchaotic system involving phase portraits, Lyapunov exponents, bifurcation diagram, Lyapunov dimension, and Poincaré maps are investigated. Then the fractional-order generalizations of the chaotic and hyperchaotic systems are studied briefly. The minimum orders we found for chaos and hyperchaos to exist in such systems are 2.89 and 3.66, respectively. Finally, the fractional-order sliding-mode controller is designed to control the fractional-order hyperchaotic system. Numerical experimental examples are shown to verify the theoretical results.  相似文献   

16.
最小二乘跟踪方法是近几年提出的一种计算动力系统跟踪轨迹的方法.基于最小二乘跟踪的灵敏度分析算法可以有效避免传统的非线性系统灵敏度分析方法中的病态初值问题,因此其在混沌系统灵敏度分析方面有着重要的应用.针对非线性的最小二乘跟踪问题,首先将其重新描述为带有约束的非线性最优控制问题,引入协态变量并将系统的哈密顿函数表示为关于状态变量和协态变量的函数.然后将目标函数的积分时间离散化,根据对偶变量变分原理,以离散区间两端的状态变量作为独立变量,用Lagrange插值多项式近似离散区间内的状态变量和协态变量,进而将非线性最优控制问题转化为求解非线性方程组问题.这种算法无需对原问题做线性化处理,避免了复杂的线性化过程以及可能因此造成的误差,同时为求解非线性最小二乘跟踪问题提供了新的思路.根据最小二乘方法可以得到两条设计参数有微小变化的状态轨迹,基于这两条状态轨迹可进一步计算出系统关于设计参数的灵敏度,范德波振子作为数值算例验证了该方法在求解最小二乘跟踪问题以及计算非线性系统灵敏度时的有效性.   相似文献   

17.
This paper examines the universal quantitative properties of the fractional- and integer-order Chen?CLee systems. A?series of bifurcation diagrams of the system were generated in order to measure Feigenbaum??s constants. It was found that the measured values of the integer-order system were accurately approaching their universal constants, while the errors between measured values of the fractional-order system and the universal constants were not very large. The results showed that both the fractional- and integer-order Chen?CLee systems belonged to a quadratic map. To the authors?? knowledge, this is the first paper to measure Feigenbaum??s constants in fractional-order systems.  相似文献   

18.
This paper investigates the stability and stabilization problem of fractional-order nonlinear systems for \(0<\alpha <2\). Based on the fractional-order Lyapunov stability theorem, S-procedure and Mittag–Leffler function, the stability conditions that ensure local stability and stabilization of a class of fractional-order nonlinear systems under the Caputo derivative with \(0<\alpha <2\) are proposed. Finally, typical instances, including the fractional-order nonlinear Chen system and the fractional-order nonlinear Lorenz system, are implemented to demonstrate the feasibility and validity of the proposed method.  相似文献   

19.
By converting an optimal control problem for nonlinear systems to a Hamiltonian system,a symplecitc-preserving method is proposed.The state and costate variables are approximated by the Lagrange polynomial.The state variables at two ends of the time interval are taken as independent variables.Based on the dual variable principle,nonlinear optimal control problems are replaced with nonlinear equations.Furthermore,in the implementation of the symplectic algorithm,based on the 2N algorithm,a multilevel method is proposed.When the time grid is refined from low level to high level,the initial state and costate variables of the nonlinear equations can be obtained from the Lagrange interpolation at the low level grid to improve efficiency.Numerical simulations show the precision and the efficiency of the proposed algorithm in this paper.  相似文献   

20.
This article deals with the anti-synchronization between two identical chaotic fractional-order Qi system, Genesio–Tesi system, and also between two different fractional-order Genesio–Tesi and Qi systems using active control method. The chaotic attractors of the systems are found for fractional-order time derivatives described in Caputo sense. Numerical simulation results which are carried out using Adams–Boshforth–Moulton method show that the method is reliable and effective for anti-synchronization of nonlinear dynamical evolutionary systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号