首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Immersed in an ionic solution, a network of polyelectrolytes imbibes the solution and swells, resulting in a polyelectrolyte gel. The swelling is reversible, and the amount of swelling is regulated by ionic concentrations, mechanical forces, and electric potentials. This paper develops a field theory to couple large deformation and electrochemistry. A specific material model is described, including the effects of stretching the network, mixing the polymers with the solvent and ions, and polarizing the gel. We show that the notion of osmotic pressure in a gel has no experimental significance in general, but acquires a physical interpretation within the specific material model. The theory is used to analyze several phenomena: a gel swells freely in an ionic solution, a gel swells under a constraint of a substrate, electric double layer at the interface between the gel and the external solution, and swelling of a gel of a small size.  相似文献   

2.
Asides from the influence of incoming waves, ships can experience steady motions, such as rigid-body sinkage and trim motions, and flexible-body vertical bending motions, due to a constant forward speed even under calm water conditions. In this paper, a novel approach to analyze steady-ship hydroelasticity, particularly for the steady-ship motions and surrounding steady-wave disturbances, is proposed using a three-dimensional (3D) direct coupling method, based on a higher-order boundary element method (HOBEM) and a higher-order shell finite element method (FEM). Within the linearized framework, a solution method is proposed based on a two-step procedure, using two types of Neumann–Kelvin (NK) linear flow models for the fluid part and a virtual work equilibrium equation for the structural part. The first step is to compute a mean position wave-resistance problem using the modified NK equation, the second step is to solve a perturbed position wave-resistance problem, by employing a classical NK model and a virtual work equation based on the first step’s solution. Detailed mathematical formulation and numerical procedures are described, and a few numerical results are illustrated. These include both rigid and flexible steady-ship motions, Von-Mises stress distributions, and wave-resistance coefficients for Froude numbers ranging from 0.15 to 0.5. Furthermore, the numerical results obtained using the present direct coupling method and a modal-based one are compared.  相似文献   

3.
Adopting a two-temperature and two-velocity model, appropriate to a bidisperse porous medium (BDPM) proposed by Nield and Kuznetsov (2008), the classical steady, mixed convection boundary layer flow about a horizontal, isothermal circular cylinder embedded in a porous medium has been theoretically studied in this article. It is shown that the boundary layer analysis leads to expressions for the flow and heat transfer characteristics in terms of an inter-phase momentum parameter, a thermal diffusivity ratio, a thermal conductivity ratio, a permeability ratio, a modified thermal capacity ratio, and a buoyancy or mixed convection parameter. The transformed partial differential equations governing the flow and heat transfer in the f-phase (the macro-pores) and the p-phase (the remainder of the structure) are solved numerically using a very efficient implicit finite-difference technique known as Keller-box method. A good agreement is observed between the present results and those known from the open literature in the special case of a traditional Darcy formulation (monodisperse system).  相似文献   

4.
Subject to a compressive membrane force, a film bonded to a compliant substrate often forms a pattern of wrinkles. This paper studies such wrinkles in a layered structure used in several recent experiments. The structure comprises a stiff film bonded to a compliant substrate, which in turn is bonded to a rigid support. Two types of analyses are performed. First, for sinusoidal wrinkles, by minimizing energy, we obtain the wavelength and the amplitude of the wrinkles for substrates of various moduli and thicknesses. Second, we develop a method to simultaneously evolve the two-dimensional pattern in the film and the three-dimensional elastic field in the substrate. The simulations show that the wrinkles can evolve into stripes, labyrinths, or herringbones, depending on the anisotropy of the membrane forces. Statistical averages of the amplitude and wavelength of wrinkles of various patterns correlate well with the analytical solution of the sinusoidal wrinkles.  相似文献   

5.
不可压缩粘性流动的CBS有限元解法   总被引:1,自引:1,他引:0  
对于二维不可压缩粘性流动,首先通过坐标变换的方式得到了的不含对流项的NS方程,并给出了CBS有限元方法求解的一般过程。结合一类同时含有压力和速度的出口边界条件,对方腔顶盖驱动流、后向台阶绕流和圆柱绕流进行了计算。所得结果与基准解符合良好,验证了CBS算法对于定常、非定常粘性不可压缩流动问题的可行性和所用出口边界条件的无反射特性。特别的,对于圆柱绕流,Re=100时非定常升、阻力系数及漩涡脱落等非定常都得到了较好地模拟,为一进步研究自激振动等更加复杂的非定常流动问题奠定了基础。  相似文献   

6.
Adhesive forces commonly exhibit a monotonic increase or a maximum with increasing relative humidity. However, anomalous behavior has been reported. Here, a numerical model of adhesive forces, comprised mainly of capillary and van der Waals forces, between a tip and a surface is established. It is described by a power law that considers the geometry, the liquid bridge wetting radius, the contact angle, and the separation distance. Capillary forces (sum of surface tension and Laplace pressure) and van der Waals forces are calculated. The latter cannot be neglected in the adhesion even at high humidity. Decrease in adhesion with increasing relative humidity can be attributed to a blunt tip shape, which is validated by experimental data. Specifically, the decrease in adhesion is attributed primarily to a transition from a rounded to a blunt tip shape. Structuring objects at the micro- or nanoscale can either increase or decrease adhesion as a function of relative humidity. This has a wide range of applications in robotic manipulation and can provide a better understanding of adhesion mechanisms in atomic force microscopy in ambient air.  相似文献   

7.
A method is proposed which can facilitate parallel computations of particle transport in complex environments, such as urban landscapes. A two stage‐approach is used, where in the first stage, physical simulations of various aerosol release scenarios are conducted on a high‐performance distributed computing facility, such as a Beowulf cluster or a computing grid, and stored in a database as a set of transfer probabilities. In this stage, the method provides a partially decoupled parallel implementation of a tightly coupled physical system. In the second stage, various aerosol release scenarios can be analysed in a timely manner, using obtained probability distributions and a simpler stochastic simulator, which can be executed on a commodity computer, such as a workstation or a laptop. The method presents a possibility of solving the inverse problem of determining the release source from the available deposition data. Using the proposed approach and developed graphical tools, a case of aerosol dispersion in a typical urban landscape has been studied. A considerable speedup of analysis time for different aerosol dispersion scenarios has been demonstrated. The method is appropriate for the development of express risk analysis systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Within the framework of continuum mechanics, the double power series expansion technique is proposed, and a series of reduced one-dimensional (1D) equations for a piezoelectric semiconductor beam are obtained. These derived equations are universal, in which extension, flexure, and shear deformations are all included, and can be degenerated to a number of special cases, e.g., extensional motion, coupled extensional and flexural motion with shear deformations, and elementary flexural motion without shear deformations. As a typical application, the extensional motion of a ZnO beam is analyzed sequentially. It is revealed that semi-conduction has a great effect on the performance of the piezoelectric semiconductor beam, including static deformations and dynamic behaviors. A larger initial carrier density will evidently lead to a lower resonant frequency and a smaller displacement response, which is a little similar to the dissipative effect. Both the derived approximate equations and the corresponding qualitative analysis are general and widely applicable, which can clearly interpret the inner physical mechanism of the semiconductor in the piezoelectrics and provide theoretical guidance for further experimental design.  相似文献   

9.
This study presents a systematic approach, leading to a new set of equations of motion for a class of mechanical systems subject to a single frictionless contact constraint. To achieve this goal, some fundamental concepts of b-geometry are utilized and adapted to the general framework of Analytical Dynamics. These concepts refer to the theory of manifolds with boundary and provide a suitable and strong theoretical foundation. First, the boundary is defined within the original configuration manifold of the system by the equality in the unilateral constraint. Then, an appropriate vector bundle is considered, involving only smooth vector fields, even at the boundary. After determining the essential geometric properties (i.e., the metric and the connection) near the boundary, Newton’s law of motion is applied. In this way, the equations of motion during the contact phase are derived as a system of ordinary differential equations. These equations possess a special form inside a thin boundary layer. In particular, the essential dynamics of the systems examined is found to be governed by a single second order ordinary differential equation, which is investigated fully. Moreover, a critical comparison of the present formulation with the classical formulations applied to systems with a frictionless contact is performed. Finally, the effect of the dominant parameters on the dynamics during the contact phase and the steps for the application process to mechanical systems are illustrated by two selected examples, referring to contact of a particle and a rigid body with a plane.  相似文献   

10.
根据含圆形嵌体平面问题在极坐标下的弹性力学基本解,使用Betti互换定理,在有限部积分意义下将问题归结为两个以裂纹岸位移间断为基本未知量、对于Ⅰ型和Ⅱ型问题相互独立的超奇异积分方程,对含圆形嵌体弹性平面中的径向裂纹问题进行了研究.根据有限部积分原理,建立了问题的数值算法.计算结果表明,嵌体半径、裂纹位置及材料剪切弹性模量等都对裂纹应力强度因子具有较为明显的影响.  相似文献   

11.
Nonlinear Responses of Buckled Beams to Subharmonic-Resonance Excitations   总被引:4,自引:0,他引:4  
Emam  Samir A.  Nayfeh  Ali H. 《Nonlinear dynamics》2004,35(2):105-122
We investigated theoretically and experimentally the nonlinear responseof a clamped-clamped buckled beam to a subharmonic resonance of orderone-half of its first vibration mode. We used a multi-mode Galerkindiscretization to reduce the governing nonlinear partial-differentialequation in space and time into a set of nonlinearly coupledordinary-differential equations in time only. We solved the discretizedequations using the method of multiple scales to obtain a second-orderapproximate solution, including the modulation equations governing itsamplitude and phase, the effective nonlinearity, and the effectiveforcing. To investigate the large-amplitude dynamics, we numericallyintegrated the discretized equations using a shooting method to computeperiodic orbits and used Floquet theory to investigate their stabilityand bifurcations. We obtained interesting dynamics, such as phase-lockedand quasiperiodic motions, resulting from a Hopf bifurcation,snapthrough motions, and a sequence of period-doubling bifurcationsleading to chaos. Some of these nonlinear phenomena, such as Hopfbifurcation, cannot be predicted using a single-mode Galerkindiscretization. We carried out an experiment and obtained results ingood qualitative agreement with the theoretical results.  相似文献   

12.
Hunt  G.W.  Peletier  M.A.  Champneys  A.R.  Woods  P.D.  Ahmer Wadee  M.  Budd  C.J.  Lord  G.J. 《Nonlinear dynamics》2000,21(1):3-29
A long structural system with an unstable (subcritical)post-buckling response that subsequently restabilizes typically deformsin a cellular manner, with localized buckles first forming and thenlocking up in sequence. As buckling continues over a growing number ofcells, the response can be described by a set of lengthening homoclinicconnections from the fundamental equilibrium state to itself. In thelimit, this leads to a heteroclinic connection from the fundamentalunbuckled state to a post-buckled state that is periodic. Under suchprogressive displacement the load tends to oscillate between twodistinct values.The paper is both a review and a pointer tofuture research. The response is described via a typical system, asimple but ubiquitous model of a strut on a foundation which includesinitially-destabilizing and finally-restabilizing nonlinear terms. Anumber of different structural forms, including the axially-compressedcylindrical shell, a typical sandwich structure, a model of geologicalfolding and a simple link model are shown to display such behaviour. Amathematical variational argument is outlined for determining the globalminimum postbuckling state under controlled end displacement (rigidloading). Finally, the paper stresses the practical significance of aMaxwell-load instability criterion for such systems. This criterion,defined under dead loading to be where the pre-buckled and post-buckledstate have the same energy, is shown to have significance in the presentsetting under rigid loading also. Specifically, the Maxwell load isargued to be the limit of minimum energy localized solutions asend-shortening tends to infinity.  相似文献   

13.
14.
The problem of plane convective flow through a porous medium in a rectangular vessel with a linear temperature profile steadily maintained on the boundary is considered. The onset of unsteady regimes is investigated numerically. It is shown that their onset scenarios depend on the vessel dimensions and the seepage Rayleigh number and may be as follows: the generation of stable and unstable periodic regimes as a result of a one-sided bifurcation, the generation of a stable periodic regime as a result of an Andronov-Hopf cosymmetric bifurcation, the formation of a chaotic attractor, the branching-out of a stable quasi-periodic regime from a point of a single-parameter family of steady-state regimes, and the generation of unstable periodic regimes as a result of disintegration of homoclinic trajectories. The specifics of most of the bifurcations mentioned above are attributable to the cosymmetry of the problem considered.  相似文献   

15.
The effects of small vibrations on a particle oscillating near a solid wall in a fluid cell, relevant to material processing such as crystal growth in space, have been investigated experimentally and theoretically. Assuming the boundary layer around the particle to be thin compared to the particle radius at high vibration frequencies, an inviscid fluid model was developed to predict the motion of a spherical particle placed near a wall of a rectangular liquid-filled cell subjected to a sinusoidal vibration. Under these conditions, a non-uniform pressure distribution around the particle results in an average pressure that gives rise to an attraction force. Theoretical expressions for the attraction force are derived for the particle vibrating normal to and parallel with the nearest cell wall. The magnitude of this attractive force has been verified experimentally by measuring the motion of a steel particle suspended in the fluid cell by a thin wire. Experiments performed at high frequencies showed that the mean particle position, when the particle is brought near a cell wall, shifts towards the same wall, and is dependent on the cell amplitude and frequency, particle and fluid densities.  相似文献   

16.
In this paper we validate the generalized geometric entropy criterion for admissibility of shocks in systems which change type. This condition states that a shock between a state in a hyperbolic region and one in a nonhyperbolic region is admissible if the Lax geometric entropy criterion, based on the number of characteristics entering the shock, holds, where now the real part of a complex characteristic replaces the characteristic speed itself. We test this criterion by a nonlinear inviscid perturbation. We prove that the perturbed Cauchy problem in the elliptic region has a solution for a uniform time if the data lie in a suitable class of analytic functions and show that under small perturbations of the data a perturbed shock and a perturbed solution in the hyperbolic region exist, also for a uniform time.  相似文献   

17.
The dynamics of a simplified model of a spinning spacecraft with a circumferential nutational damper is investigated using numerical simulations for nonlinear phenomena. A realistic spacecraft parameter configuration is investigated and is found to exhibit chaotic motion when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitude and frequency. Such a torque, in practice, may arise in the platform of a dual-spin spacecraft under malfunction of the control system or from an unbalanced rotor or from vibrations in appendages. The equations of motion of the model are derived with Lagrange's equations using a generalisation of the kinetic energy equation and a linear stability analysis is given. Numerical simulations for satellite parameters are performed and the system is found to exhibit chaotic motion when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitude and frequency. The motion is studied by means of time history, phase space, frequency spectrum, Poincaré map, Lyapunov characteristic exponents and Correlation Dimension. For sufficiently large values of torque amplitude, the behaviour of the system was found to have much in common with a two well potential problem such as a Duffing oscillator. Evidence is also presented, indicating that the onset of chaotic motion was characterised by period doubling as well as intermittency.  相似文献   

18.
The control of flight forces and moments by flapping wings of a model bumblebee is studied using the method of computational fluid dynamics.Hovering flight is taken as the reference flight:Wing kinematic parameters are varied with respect to their values at hovering flight.Moments about(and forces along)x,y,z axes that pass the center of mass are computed.Changing stroke amplitude(or wingbeat frequency)mainly produces a vertical force.Changing mean stroke angle mainly produces a pitch moment.Changing wing angle of attack,when down-and upstrokes have equal change,mainly produces a vertical force,while when down-and upstrokes have opposite changes,mainly produces a horizontal force and a pitch moment.Changing wing rotation timing,when dorsal and ventral rotations have the same timing,mainly produces a vertical force,while when dorsal and ventral rotations have opposite timings,mainly produces a pitch moment and a horizontal force.Changing rotation duration has very small effect on forces and moments.Anti-symmetrically changing stroke amplitude(or wingbeat frequency)of the contralateral wings mainly produces a roll moment.Anti-symmetrically changing angles of attack of the contralateral wings,when down-and upstrokes have equal change,mainly produces a roll moment,while when down-and upstrokes have opposite changes,mainly produces a yaw moment.Anti-symmetrically changing wing rotation timing of the contralateral wings,when dorsal and ventral rotations have the same timing,mainly produces a roll moment and a side force,while when dorsal and ventral rotations have opposite timings,mainly produces a yaw moment.Vertical force and moments about the three axes can be separately controlled by separate kinematic variables.A very fast rotation can be achieved with moderate changes in wing kinematics.  相似文献   

19.
The evolution of a shock wave and its reflection from a wall in a gas-liquid medium with dissolution and hydration are experimentally investigated. Dissolution and hydration behind the front of a moderate-amplitude shock wave are demonstrated to be caused by fragmentation of gas bubbles, resulting in a drastic increase in the area of the interphase surface and in a decrease in size of gas inclusions. The mechanisms of hydration behind the wave front are examined. Hydration behind the front of a shock wave with a stepwise profile is theoretically analyzed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 58–75, May–June, 2007.  相似文献   

20.
This paper describes the microscopic and macroscopic breakup characteristics, as well as the velocity and size distributions, of mono-dispersed droplets in relation to the breakup regimes. For this experiment, a droplet generator equipped with a piezo stack produced mono-dispersed droplets. The droplet-breakup phenomenon due to the cross-flow was captured in microscopic and macroscopic views by using the following: a spark lamp, a Nd:YAG laser, a long distance microscope and a CCD camera as a function of the Weber number. Along with the analysis of the images, the droplet size and velocity distributions were measured in the near nozzle region by a phase Doppler particle analyzer system at bag, stretching and thinning, and catastrophic breakup regimes. The results of this study showed the size and velocity distributions of disintegrated droplets at the bag, stretching and thinning, and catastrophic breakup regimes. In the bag breakup regime, the droplets separated into small and large droplets during breakup. Alternatively, the droplets disintegrated at a shorter duration and formed a cloud, similar to a fuel spray injected through an injector, in the stretching and thinning and catastrophic breakup regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号