首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we discuss the formulation of the governing equations that describe flow of fluids in porous media. Various types of fluid flow, ranging from single-phase flow to compositional flow, are considered. It is shown that all the differential equations governing these types of flow can be effectively rewritten in a fractional flow formulation; i.e., in terms of a global pressure and saturation (or saturations), and that mixed finite element methods can be accurately exploited to solve the pressure equation. Numerical results are presented to see the performance of the mixed methods for the flow equations in three space dimensions.  相似文献   

2.
含有启动压力梯度的渗流问题及其无网格解法   总被引:8,自引:2,他引:6  
针对两种典型的涉及启动压力梯度的渗流问题,给出了无量纲化的渗流控制方程、初始条件和边界条件,并使用无网格方法进行数值模拟。计算结果使用Gringarten—Bourdet图版进行井底压力分析,给出了一种计算动边界位置的方法,并详细讨论了动边界变化情况。  相似文献   

3.
A divergence-free moving particle semi-implicit method is introduced for free-surface flow through porous media. Numerical incompressibility is conserved by solving additional pressure Poisson equation (PPE). Depending on current particle coordinates, a porosity-based factor is introduced to incorporate the effect of solid volume inside the porous domain. A hybrid formulation containing specified boundary condition and PPE is utilized on free-surface particles. The current framework is tested for four different problems. The first problem shows the effect of the proposed factor in vertical flow through a rectangular porous block and its representative volume change for different phases. Second and third problems validate the numerical model for dam break through a rectangular block of homogeneous porous media. In the fourth problem, flow through a trapezoidal porous block consisting of different porous media with variable effective porosity and permeability is simulated.  相似文献   

4.
5.
A new formulation is proposed to describe immiscible compressible two-phase flow in porous media. The main feature of this formulation is the introduction of a global pressure. The resulting equations are written in a fractional flow formulation and lead to a coupled system which consists of a nonlinear parabolic (the global pressure equation) and a nonlinear diffusion–convection one (the saturation equation) which can be efficiently solved numerically. To cite this article: B. Amaziane, M. Jurak, C. R. Mecanique 336 (2008).  相似文献   

6.
In this paper, the macroscopic equations of mass and momentum are developed and discretized based on the smoothed particle hydrodynamics (SPH) formulation for the interaction at an interface of flow with porous media. The theoretical background of flow through porous media is investigated to highlight the key constraints that should be satisfied, particularly at the interface between the porous media flow and the overlying free flow. The study aims to investigate the derivation of the porous flow equations, computation of the porosity, and treatment of the interfacial boundary layer. It addresses weak assumptions that are commonly adopted for interfacial flow simulation in particle-based methods. As support to the theoretical analysis, a two-dimensional weakly compressible SPH model is developed based on the proposed interfacial treatment. The equations in this model are written in terms of the intrinsic averages and in the Lagrangian form. The effect of particle volume change due to the spatial change of porosity is taken into account, and the extra stress terms in the momentum equation are approximated by using Ergun's equation and the subparticle scale model to represent the drag and turbulence effects, respectively. Four benchmark test cases covering a range of flow scenarios are simulated to examine the influence of the porous boundary on the internal, interface, and external flows. The capacity of the modified SPH model to predict velocity distributions and water surface behavior is fully examined with a focus on the flow conditions at the interfacial boundary between the overlying free flow and the underlying porous media.  相似文献   

7.
The analysis of two-phase flow in porous media begins with the Stokes equations and an appropriate set of boundary conditions. Local volume averaging can then be used to produce the well known extension of Darcy's law for two-phase flow. In addition, a method of closure exists that can be used to predict the individual permeability tensors for each phase. For a heterogeneous porous medium, the local volume average closure problem becomes exceedingly complex and an alternate theoretical resolution of the problem is necessary. This is provided by the method of large-scale averaging which is used to average the Darcy-scale equations over a region that is large compared to the length scale of the heterogeneities. In this paper we present the derivation of the large-scale averaged continuity and momentum equations, and we develop a method of closure that can be used to predict the large-scale permeability tensors and the large-scale capillary pressure. The closure problem is limited by the principle of local mechanical equilibrium. This means that the local fluid distribution is determined by capillary pressure-saturation relations and is not constrained by the solution of an evolutionary transport equation. Special attention is given to the fact that both fluids can be trapped in regions where the saturation is equal to the irreducible saturation, in addition to being trapped in regions where the saturation is greater than the irreducible saturation. Theoretical results are given for stratified porous media and a two-dimensional model for a heterogeneous porous medium.  相似文献   

8.
A new formulation is presented for the modeling of immiscible compressible two-phase flow in porous media taking into account gravity, capillary effects, and heterogeneity. The formulation is intended for the numerical simulation of multidimensional flows and is fully equivalent to the original equations, contrary to the one introduced in Chavent and Jaffré (Mathematical Models and Finite Elements for Reservoir Simulation, 1986). The main feature of this formulation is the introduction of a global pressure. The resulting equations are written in a fractional flow formulation and lead to a coupled system which consists of a nonlinear parabolic (the global pressure equation) and a nonlinear diffusion–convection one (the saturation equation) which can be efficiently solved numerically. A finite volume method is used to solve the global pressure equation and the saturation equation for the water and gas phase in the context of gas migration through engineered and geological barriers for a deep repository for radioactive waste. Numerical results for the one-dimensional problem are presented. The accuracy of the fully equivalent fractional flow model is demonstrated through comparison with the simplified model already developed in Chavent and Jaffré (Mathematical Models and Finite Elements for Reservoir Simulation, 1986).  相似文献   

9.
低渗透多孔介质渗流动边界模型的解析与数值解   总被引:1,自引:0,他引:1  
考虑启动压力梯度的低渗透多孔介质非达西渗流模型属于强非线性动边界问题, 分别利用相似变量变换方法和基于空间坐标变换的有限差分方法, 对内边界变压力情况下、考虑启动压力梯度的一维低渗透多孔介质非达西渗流动边界模型进行了精确解析与数值求解研究. 研究结果表明:该动边界模型存在唯一的精确解析解, 且所求得的精确解析解可严格验证数值解的正确性;且当启动压力梯度值趋于零时, 非达西渗流动边界模型的精确解析解将退化为达西渗流情况下的精确解析解. 由求解结果作出的非零无因次启动压力梯度下的地层压力分布曲线表现出紧支性特点, 其与达西渗流模型的有显著不同. 因此, 研究低渗透多孔介质中非稳态渗流问题时, 应该考虑动边界的影响. 研究内容完善了低渗透多孔介质的非达西渗流力学理论, 为低渗透油气藏开发的试井解释与油藏数值模拟技术提供了理论基础.   相似文献   

10.
In the absence of capillarity the single-component two-phase porous medium equations have the structure of a nonlinear parabolic pressure (equivalently, temperature) diffusion equation, with derivative coupling to a nonlinear hyperbolic saturation wave equation. The mixed parabolic-hyperbolic system is capable of substaining saturation shock waves. The Rankine-Hugoniot equations show that the volume flux is continuous across such a shock. In this paper we focus on the horizontal one-dimensional flow of water and steam through a block of porous material within a geothermal reservoir. Starting from a state of steady flow we study the reaction of the system to simple changes in boundary conditions. Exact results are obtainable only numerically, but in some cases analytic approximations can be derived. When pressure diffusion occurs much faster than saturation convection, the numerical results can be described satisfactorily in terms of either saturation expansion fans, or isolated saturation shocks. At early times, pressure and saturation profiles are functionally related. At intermediate times, boundary effects become apparent. At late times, saturation convection dominates and eventually a steady-state is established. When both pressure diffusion and saturation convection occur on the same timescale, initial simple shock profiles evolve into multiple shocks, for which no theory is currently available. Finally, a parameter-free system of equations is obtained which satisfactorily represents a particular case of the exact equations.  相似文献   

11.
Effective Flux Boundary Conditions for Upscaling Porous Media Equations   总被引:3,自引:0,他引:3  
We introduce a new algorithm for setting pressure boundary conditions in subgrid simulations of porous media flow. The algorithm approximates the flux in the boundary cell as the flux through a homogeneous inclusion in a homogeneous background, where the permeability of the inclusion is given by the cell permeability and the permeability of the background is given by the ambient effective permeability. With this approximation, the flux in the boundary cell scales with the cell permeability when that permeability is small, and saturates at a constant value when that permeability is large. The flux conditions provide Neumann boundary conditions for the subgrid pressure. We call these boundary conditions effective flux boundary conditions (EFBCs). We give solutions for the flux through ellipsoidal inclusions in two and three dimensions, assuming symmetric tensor permeabilities whose principal axes align with the axes of the ellipse. We then discuss the considerations involved in applying these equations to scale up problems in geological porous media. The key complications are heterogeneity, fluctuations at all length scales, and boundary conditions at finite scales.  相似文献   

12.
When determining experimentally relative permeability and capillary pressure as a function of saturation, a self-consistent system of macroscopic equations, that includes Leverett's equation for capillary pressure, is required. In this technical note, such a system of equations, together with the conditions under which the equations apply, is formulated. With the aid of this system of equations, it is shown that, at the inlet boundary of a vertically oriented porous medium, static conditions pertain, and that potentials, because of the definition of potential, are equal in magnitude to pressures. Consequently, Leverett's equation is valid at the inlet boundary of the porous medium, provided cocurrent flow, or gravity-driven, countercurrent flow is taking place, and provided the porous medium is homogeneous. Moreover, it is demonstrated that Leverett's equation is valid for flow along the length of a vertically oriented porous medium, provided cocurrent flow, or gravity-driven, countercurrent flow is taking place, and provided the porous medium is homogeneous and there are no hydrodynamic effects. However, Leverett's equation is invalid for horizontal, steady-state, forced, countercurrent flow. When such flow is taking place, it is the sum of the pressures, and not the difference in pressures, which is related to capillary pressure.  相似文献   

13.
Matrix–fracture transfer functions are the backbone of any dual-porosity or dual-permeability formulation. The chief feature within them is the accurate definition of shape factors. To date, there is no completely accepted formulation of a matrix–fracture transfer function. Many formulations of shape factors for instantly-filled fractures with uniform pressure distribution have been presented and used; however, they differ by up to five times in magnitude. Based on a recently presented transfer function, time-dependent shape factors for water imbibing from fracture to matrix under pressure driven flow are proposed. Also new matrix–fracture transfer pressure-based shape factors for instantly-filled fractures with non-uniform pressure distribution are presented in this article. These are the boundary conditions for a case for porous media with clusters of parallel and disconnected fractures, for instance. These new pressure-based shape factors were obtained by solving the pressure diffusivity equation for a single phase using non-uniform boundary conditions. This leads to time-dependent shape factors because of the transient part of the solution for pressure. However, approximating the solution with an exponential function, one obtains constant shape factors that can be easily implemented in current dual-porosity reservoir simulators. The approximate shape factors provide good results for systems where the transient behavior of pressure is short (a case commonly encountered in fractured reservoirs).  相似文献   

14.
多孔介质干燥导致热质耦合传输过程。本文基于连续介质力学的宏观尺度,对多孔介质的热、湿和气三者耦合迁移进行数值模拟,研究压力梯度对热质传输的影响。多孔介质传质机理主要为水汽和空气的对流和扩散传输、吸附水在含湿量梯度作用下的自由扩散和其在温度梯度即Soret效应驱动下的流动。采用Galerkin加权余量的有限元方法,提出了...  相似文献   

15.
In this article, the numerical simulations for one-dimensional three-phase flows in fractured porous media are implemented. The simulation results show that oil displacement in matrix is dominated by oil–water capillary pressure only under certain conditions. When conditions are changed to decrease the amount of water entering into the fractured media from the boundary of the flow field, water in fracture may be vaporized to superheated steam. In these cases, the appearance of superheated steam in fracture rather than in matrix will decrease the fracture pressure and generate the pressure difference between matrix and fracture, which results in oil flowing from matrix to fracture. Assuming that oil is wetting to steam, the matrix steam–oil capillary pressure will decrease the matrix oil-phase pressure as the matrix steam saturation increases. After the steam–oil capillary pressure finally exceeds the pressure difference due to the appearance of superheated steam in fracture, the oil displacement in matrix will stop. It is also shown that variations of the water relative permeability curve in matrix do not result in different mechanisms for oil displacement in matrix. The simulation results suggest that the amount of liquid water supply from the boundary of flow field fundamentally influence the mechanisms for oil displacement in matrix.  相似文献   

16.
High-Velocity Laminar and Turbulent Flow in Porous Media   总被引:1,自引:0,他引:1  
We model high-velocity flow in porous media with the multiple scale homogenization technique and basic fluid mechanics. Momentum and mechanical energy theorems are derived. In idealized porous media inviscid irrotational flow in the pores and wall boundary layers give a pressure loss with a power of 3/2 in average velocity. This model has support from flow in simple model media. In complex media the flow separates from the solid surface. Pressure loss effects of flow separation, wall and free shear layers, pressure drag, flow tube velocity and developing flow are discussed by using phenomenological arguments. We propose that the square pressure loss in the laminar Forchheimer equation is caused by development of strong localized dissipation zones around flow separation, that is, in the viscous boundary layer in triple decks. For turbulent flow, the resulting pressure loss due to average dissipation is a power 2 term in velocity.  相似文献   

17.
Fractures serve as primary conduits having a great impact on the migration of injected fluid into fractured permeable media. Appropriate transport properties such as relative permeability and capillary pressure are essential for successful simulation and prediction of multi-phase flow in such systems. However, the lack of a thorough understanding of the dynamics governing immiscible displacement in fractured media, limits our ability to properly represent their macroscopic transport properties. Previous experimental observations of imbibition front evolution in fractured rocks are examined in the present study using an automated history-matching approach to obtain representative relative permeability and capillary pressure curves. Predicted imbibition front evolution under different flow conditions resulted in an excellent agreement with experimental observations. Sensitivity analyses, in combination with direct experimental observation, allowed exploring the competing effects of relative permeability and capillary pressure on the development of saturation distribution and imbibing front evolution in fractured porous media. Results show that residual saturations are most sensitive to matrix relative permeability to oil, while the ratio of oil and water relative permeability, rock heterogeneity, boundary condition, and matrix–fracture capillary pressure contrast, affect displacement shape, speed, and geometry of the imbibing front.  相似文献   

18.
An extended formulation of Darcy's two-phase law is developed on the basis of Stokes' equations. It leads, through results borrowed from the thermodynamics of irreversible processes, to a matrix of relative permeabilities. Nondiagonal coefficients of this matrix are due to the viscous coupling exerted between fluid phases, while diagonal coefficients represent the contribution of both fluid phases to the total flow, as if they were alone. The coefficients of this matrix, contrary to standard relative permeabilities, do not depend on the boundary conditions imposed on two-phase flow in porous media, such as the flow rate. This formalism is validated by comparison with experimental results from tests of two-phase flow in a square cross-section capillary tube and in porous media. Coupling terms of the matrix are found to be nonnegligible compared to diagonal terms. Relationships between standard relative permeabilities and matrix coefficients are studied and lead to an experimental way to determine the new terms for two-phase flow in porous media.  相似文献   

19.
In this work, a thermodynamically consistent gradient formulation for partially saturated cohesive-frictional porous media is proposed. The constitutive model includes a classical or local hardening law and a softening formulation with state parameters of non-local character based on gradient theory. Internal characteristic length in softening regime accounts for the strong shear band width sensitivity of partially saturated porous media regarding both governing stress state and hydraulic conditions. In this way the variation of the transition point (TP) of brittle-ductile failure mode can be realistically described depending on current confinement condition and saturation level. After describing the thermodynamically consistent gradient theory the paper focuses on its extension to the case of partially saturated porous media and, moreover, on the formulation of the gradient-based characteristic length in terms of stress and hydraulic conditions. Then the localization indicator for discontinuous bifurcation is formulated for both drained and undrained conditions.  相似文献   

20.
In this paper, we first investigate the influence of different Dirichlet boundary discretizations on the convergence rate of the multi‐point flux approximation (MPFA) L‐method by the numerical comparisons between the MPFA O‐ and L‐method, and show how important it is for this new method to handle Dirichlet boundary conditions in a suitable way. A new Dirichlet boundary strategy is proposed, which in some sense can well recover the superconvergence rate of the normal velocity. In the second part of the work, the MPFA L‐method with homogeneous media is studied. A systematic concept and geometrical interpretations of the L‐method are given and illustrated, which yield more insight into the L‐method. Finally, we apply the MPFA L‐method for two‐phase flow in porous media on different quadrilateral grids and compare its numerical results for the pressure and saturation with the results of the two‐point flux approximation method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号