首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Particle migration and deposition, and resulting permeability impairment occurring in porous media are described by a practical phenomenological model considering temperature variation and particle transport by advection and dispersion. Variation of the filter coefficient and permeability of porous matrix by temperature and particle deposition, and other essential factors are considered by means of the special correlations of the relevant variables and dimensionless numbers. Comparison of the numerical results, obtained using a finite-difference numerical scheme with and without considering the dispersion mechanism and temperature variation, reveals the significance of such effects on fines migration and deposition, and consequent permeability impairment in porous media. Improved model presented in this article can be instrumental for scientifically guided experimentation, analysis, and optimal design of processes involving in transport of colloidal and fine particles through geological subsurface formations.  相似文献   

2.
Fines release and migration is a universal problem in the production of oil from poorly consolidated sandstone reservoirs. This problem can result in the changes of porosity and permeability. It may not only damage a production facility, but it can also have a profound effect on oil recovery, resulting from the change in heterogeneity of the oil formation. Based on the macroscopic continuous porous media, continuity equations for multiphase flow in oil formations, and the theories of fines release and migration, a three-dimensional (3D) field scale mathematical model describing migration of fines in porous media is developed. The model is solved by a finite-difference method and the line successive over relaxation (LSOR) technique. A numerical simulator is written in Fortran 90 and it can be used to predict (1) the ratio of fines to production liquid volume, (2) the permeability change caused by colloidal and hydrodynamic forces resulting from fines release and migration, and (3) production performance. The numerical results of the one-dimensional model were verified by the data obtained by core displacement experiments. The sensitivity of numerical results with grid block size was studied by coarse grids, moderate grids, and fine grids. In addition, an oil field example with five-spot patterns was made on the numerical simulator. The results show that fines migration in an oil formation can accelerate the development of heterogeneity of the reservoir rock, and has an obvious influence on production performance, i.e., water drive front, water-cut trends, and oil recovery.  相似文献   

3.
Proppants transport is an advanced technique to improve the hydraulic fracture phenomenon, in order to promote the versatility of gas/oil reservoirs. A numerical simulation of proppants transport at both hydraulic fracture (HF) and natural fracture (NF) intersection is performed to provide a better understanding of key factors which cause, or contribute to proppants transport in HF–NF intersection. Computational fluid dynamics (CFD) in association with discrete element method (DEM) is used to model the complex interactions between proppant particles, host fluid medium and fractured walls. The effect of non-spherical geometry of particles is considered in this model, using the multi-sphere method. All interaction forces between fluid flow and particles are considered in the computational model. Moreover, the interactions of particle–particle and particle–wall are taken into account via Hertz–Mindlin model. The results of the CFD-DEM simulations are compared to the experimental data. It is found that the CFD-DEM simulation is capable of predicting proppant transport and deposition quality at intersections which are in agreement with experimental data. The results indicate that the HF–NF intersection type, fluid velocity and NF aperture affect the quality of blockage occurrence, presenting a new index, called the blockage coefficient which indicates the severity of the blockage.  相似文献   

4.
对含液颗粒材料流固耦合分析建议了一个基于离散颗粒模型与特征线SPH法的显式拉格朗日-欧拉无网格方案。在已有的用以模拟固体颗粒集合体的离散颗粒模型[1]基础上,将颗粒间间隙内的流体模型化为连续介质,对其提出并推导了基于特征线的SPH法。数值例题显示了所建议方案在模拟颗粒材料与间隙流相互作用的能力和性能以及间隙流体对颗粒结构承载能力及变形的影响。  相似文献   

5.
Deep bed filtration of particle suspensions in porous media occurs during water injection into oil reservoirs, drilling fluid invasion of reservoir production zones, fines migration in oil fields, industrial filtering, bacteria, viruses or contaminants transport in groundwater etc. The basic features of the process are particle capture by the porous medium and consequent permeability reduction. Models for deep bed filtration contain two quantities that represent rock and fluid properties: the filtration function, which is the fraction of particles captured per unit particle path length, and formation damage function, which is the ratio between reduced and initial permeabilities. These quantities cannot be measured directly in the laboratory or in the field; therefore, they must be calculated indirectly by solving inverse problems. The practical petroleum and environmental engineering purpose is to predict injectivity loss and particle penetration depth around wells. Reliable prediction requires precise knowledge of these two coefficients. In this work we determine these quantities from pressure drop and effluent concentration histories measured in one-dimensional laboratory experiments. The recovery method consists of optimizing deviation functionals in appropriate subdomains; if necessary, a Tikhonov regularization term is added to the functional. The filtration function is recovered by optimizing a non-linear functional with box constraints; this functional involves the effluent concentration history. The permeability reduction is recovered likewise, taking into account the filtration function already found, and the functional involves the pressure drop history. In both cases, the functionals are derived from least square formulations of the deviation between experimental data and quantities predicted by the model.  相似文献   

6.
In this paper, we present a new method for simulating the motion of a disperse particle phase in a carrier gas through porous media. We assume a sufficiently dilute particle‐laden flow and compute, independently of the disperse phase, the steady laminar fluid velocity using the immersed boundary method. Given the velocity of the carrier gas, the equations of motion for the particles experiencing the Stokes drag force are solved to determine their trajectories. The ‘no‐slip consistent’ particle tracking algorithm avoids possible numerical filtration of very small particles due to the nonzero velocity field at the solid–fluid interface introduced by the immersed boundary method. This physically consistent tracking allows a reliable estimation of the filtration efficiency of porous filters due to inertial impaction. We illustrate and test our new approach for model porous media consisting of a structured array of aligned rectangular fibers, arranged in line and staggered. In the staggered geometry, the effect of the residual velocity at the solid–fluid interface is significant for particles with low inertia. Without adopting the developed no‐slip consistent numerical method, an artificial numerical filtration is observed, which becomes dominant for small enough particles. For both the in line and the staggered geometries, the filtration rate depends quite strongly and non monotonically on the particle inertia. This is expressed most clearly in the staggered arrangement in which a very strong increase in the filtration efficiency is observed at a well‐defined critical droplet size, corresponding to a qualitative change in the dominant particle paths in the porous medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Particle bridge formation during the flow of a liquid with particles through a porous material is a fouling mechanism that can block the pores and, hence, decrease the permeability of the material. Ultrasonic irradiation of the material is a cleaning method that can restore the permeability. We make a numerical study of this cleaning method using the lattice-Boltzmann method. We start from a pore blocked by two spherical particles attached to the pore wall by colloidal adhesion forces, thus forming a particle bridge. Next we calculate the hydrodynamic force exerted by a high-frequency acoustic wave on the two particles. By comparing the hydrodynamic force and the adhesion force we investigate, whether the particle bridge will be removed by the ultrasonic irradiation. A sensitivity study is carried out to investigate the influence of some relevant parameters, such as the acoustic wave amplitude, the acoustic frequency, the fluid flow velocity and the ratio of particle diameter and pore diameter. An upscaling procedure is applied to translate the microscopic results for the removal of the particles at the pore level to the permeability improvement of the material at the macroscopic level. A comparison is made between numerical results and experimental data. The agreement is reasonable.  相似文献   

8.
This paper presents a numerical model for simulating the pore-scale transport and infiltration of dilute suspensions of particles in a granular porous medium under the action of hydrodynamic and gravitational forces. The formulation solves the Stokes’ flow equations for an incompressible fluid using a fixed grid, multigrid finite difference method and an embedded boundary technique for modeling particle–fluid coupling. The analyses simulate a constant flux of the fluid suspension through a cylindrical model pore. Randomly generated particles are collected within the model pore, initially through contact and attachment at the grain surface (pore wall) and later through mounding close to the pore inlet. Simple correlations have been derived from extensive numerical simulations in order to estimate the volume of filtered particles that accumulate in the pore and the differential pressure needed to maintain a constant flux through the pore. The results show that particle collection efficiency is correlated with the Stokes’ settling velocity and indirectly through the attachment probability with the particle–grain surface roughness. The differential pressure is correlated directly with the maximum mound height and indirectly with particle size and settling velocity that affect mound packing density. Simple modification factors are introduced to account for pore length and dip angle. These parameters are used to characterize pore-scale infiltration processes within larger scale network models of particle transport in granular porous media in a companion paper. Articlenote: Currently at GZA GeoEnvironmental Inc., 1 Edgewater Drive, Norwood, MA 02062, U.S.A.  相似文献   

9.
The body-force-driven motion of a homogeneous distribution of spherically symmetric porous shells in an incompressible Newtonian fluid and the fluid flow through a bed of these shell particles are investigated analytically. The effect of the hydrodynamic interaction among the porous shell particles is taken into account by employing a cell-model representation. In the limit of small Reynolds number, the Stokes and Brinkman equations are solved for the flow field around a single particle in a unit cell, and the drag force acting on the particle by the fluid is obtained in closed forms. For a suspension of porous spherical shells, the mobility of the particles decreases or the hydrodynamic interaction among the particles increases monotonically with a decrease in the permeability of the porous shells. The effect of particle interactions on the creeping motion of porous spherical shells relative to a fluid can be quite significant in some situations. In the limiting cases, the analytical solution describing the drag force or mobility for a suspension of porous spherical shells reduces to those for suspensions of impermeable solid spheres and of porous spheres. The particle-interaction behavior for a suspension of porous spherical shells with a relatively low permeability may be approximated by that of permeable spheres when the porous shells are sufficiently thick.  相似文献   

10.
We propose that there are two classes of temporal development in the degradation of permeability of porous media due to deposition of fines: (1) Deposition, and therefore permeability degradation, is localized to bands growing orthogonally to the average local flow direction, and (2) permeability degradation occurs in stripes parallel to the local flow direction. These latter stripes do not influence total permeability much as they develop. When these stripes are allowed to develop, they coalesce and worm holes form. We discuss how imposing different flow conditions such as constant flow and constant pressure influence the deposition process. Our conclusion is that constant pressure conditions typically lead to a slower permeability degradation compared to constant flow conditions as a direct consequence of the formation of low-permeability bands. We test our ideas by numerical simulations on a simple model for fines migration and deposition in porous media.  相似文献   

11.
Gel particle, a promising conformance control technology, is recently applying to after-polymer-flooding reservoirs by reusing the remaining polymer in porous media. However, there is no available numerical model which is useful for simulating the conformance control. A series of lab experiments are conducted to explore the main characters of gel particles movements after polymer flooding. Four main mechanisms, namely, swelling, synergy with remaining polymer, shear breaking, and deformation migration, are recognized and described by mathematical formulas. Based on the physical experiments, a numerical model is established to simulate gel particles propagation after polymer flooding. In particular, gel particles are treated as an additional component in aqueous phase. The interaction between the particle gels and the remaining polymer is simplified by aqueous viscosity relationship and particle gel grain size variation. Two transport forms, plugging and deformation migration, are embodied in the model, and the local pressure gradient controls which form the propagation belongs to. The retention of particle gels will cause pore volume decrease and therefore reduce the permeability of thief zones to bypassing water to less swept zones. An iterative method is employed to decouple the gel particle profile control model, which is robust and fairly time-saving. In particular, the flow model is numerically solved by the IMPSAT method and the gel particles continuity equation is explicitly solved by using an operator splitting technique. The newly developed model is validated by history matching results of 1D experiments and actual application case. The results suggest that the presented model is helpful to optimize parameters for profile control for gel particle profile control technology.  相似文献   

12.
Coarse-scale models are generally preferred in the numerical simulation of multi-phase flow due to computational constraints. However, capturing the effects of fine-scale heterogeneity on flow and isolating the impacts of numerical (artificial) dispersion, which increases with scale, are not trivial. In this paper, a particle-tracking method is devised and integrated in a scale-up workflow to estimate the conditional probability distributions of multi-phase flow functions, which can be considered as inputs in coarse-scale simulations with existing commercial packages. First, a novel particle-tracking method is developed to solve the saturation transport equation. The transport calculation is coupled with a velocity update, following the implicit pressure, explicit saturation framework, to solve the governing equations of two-phase immiscible flow. Each phase particle is advanced in a deterministic convection step according to the phase velocity, as well as in a stochastic dispersion step based on the random Brownian motion. A kernel-based formulation is proposed for computation of fluid saturation in accordance with the phase particle distribution. A novel aspect is that this method employs the kernel approach to construct saturation from phase particle distribution, which is an important improvement to the conventional box method that necessitates a large number of particles per grid cell for consistent saturation interpolation. The model is validated against various analytical solutions. Finally, the validated model is integrated in a statistical scale-up procedure to calibrate effective, or “pseudo,” multi-phase flow functions (e.g., relative permeability functions). The proposed scale-up framework does not impose any length scale requirement regarding the distribution of sub-grid heterogeneities.  相似文献   

13.
宋晓阳  及春宁  许栋 《力学学报》2015,47(2):231-241
利用直接数值模拟、点球浸入边界法和颗粒离散元法相结合的方法, 模拟了颗粒在明渠湍流边界层中的运动, 并对颗粒的瞬时位置进行了Voronoi 分析, 定量研究了颗粒在湍流边界层中的运动和分布规律. 研究发现:颗粒的输运对湍流的统计特征有影响, 其运动与近壁区湍流拟序结构密切相关, 在"喷发"结构作用下被带离壁面, 在"扫掠" 结构和自身重力作用下回到壁面; 在湍流边界层中, 颗粒倾向于聚集在低流速带, 呈条带状分布;颗粒在大部分时间处于"簇"状态, 偶尔跳跃到"空" 状态, 但能够很快回到邻近低速区域.   相似文献   

14.
We discuss the governing system for oil–water flow with varying water composition. The model accounts for wettability alteration, which affects the relative permeability, and for salinity-variation-induced fines migration, which reduces the relative permeability of water. The overall ionic strength represents the aqueous phase composition in the model. One-dimensional displacement of oil by high-salinity water followed by low-salinity-slug injection and high-salinity water chase drive allows for exact analytical solution. The solution is derived using the splitting method. The analytical model obtained analyses the effects of wettability alteration and fines migration on oil recovery as two distinct physical mechanisms. For typical reservoir conditions, the significant effects of both mechanisms are observed.  相似文献   

15.
This paper presents a numerical approach for the simulation of fluid flow through porous media by proposing a theoretical and numerical meso-to-macro multiscale framework, which combines the advantages of the lattice Boltzmann method (LBM) with the continuum Theory of Porous Media (TPM) to efficiently and accurately model fluid transport in heterogeneous porous media. In particular, LBM presents an alternative to experiments by studying the flow from a mesoscopic perspective, which in turn, allows the derivation of the material parameters needed for simulating the flow in the macroscopic TPM model. In this work, a meso-macro hierarchic upscaling scheme is applied to investigate the deformation-dependent intrinsic permeability properties and the Darcy/non-Darcy fluid flow regime. Concerning the mesoscale, the intrinsic permeability of the porous domain is computed by means of the LBM model at the first stage. Subsequently, deformation of the medium takes place in furtherance of determining the relation of the aforementioned deformation dependency. Thereupon, these findings are input into the TPM model in order to compute the primary unknown variables, where special focus is laid on the stability challenges in the compaction and near compaction states. With respect to the criteria of non-Darcy fluid flow, the conditions of its onset, i.e. the induced pressure gradient and mean fluid flow velocity, are computed as well using the LBM solver and conveyed afterwards to the macroscopic TPM model. Herein, the non-Darcy intrinsic permeability has been investigated in the TPM approach based on the Forchheimer equation. Simulations done on a synthetic porous micro-structure show that the combined framework proved to stand well between the two approaches.  相似文献   

16.
We have studied the transport and capture of non-Brownian particles in porous media, when the particles are mainly submitted to hydrodynamic and weak inertial effects. Visualization experiments have been performed using several models of porous media which consist of transparent etched networks of interconnected channels. Typical particle deposits have been observed at the corners of the grains of the porous medium. Their shape and their orientation were dependent on flow rate and on the anisotropy of the flow field. A trajectory analysis model has been applied to a porous medium made of a doubly periodic array of rectangular grains very close to the experimental model. This numerical model has been used to localize particle deposits and to determine particle capture efficiency on the grains over a range of low Stokes numbers, grain aspect ratios and flow-field anisotropy ratios. The results have been interpreted in terms of shape of particle deposits and compared successfully to experimental observations.  相似文献   

17.
When a porous agglomerate immersed in a fluid is submitted to a shear flow, hydrodynamic stresses acting on its surface may cause a size reduction if they exceed the cohesive stress of the agglomerate. The aggregates forming the agglomerate are slowly removed from the agglomerate surface. Such a behaviour is known when the suspending fluid is Newtonian but unknown if the fluid is viscoelastic. By using rheo-optical tools, model fluids, carbon black agglomerates and particles of various shapes, we found that the particles had a rotational motion around the vorticity axis with a period which is independent on shape (flat particles not considered), but which is exponentially increasing with the elasticity of the medium expressed by the Weissenberg number (We). Spherical particles are always rotating for We up to 2.6 (largest investigated We in this study) but elongated particles stop rotating for We>0.9 while orienting along the flow direction. Erosion is strongly reduced by elasticity. Since finite element numerical simulation shows that elasticity increases the local stress around a particle, the origin of the erosion reduction is interpreted as an increase of cohesiveness of the porous agglomerate due to the infiltration of a viscoelastic fluid.  相似文献   

18.
In particle-laden flows through porous media, porosity and permeability are significantly affected by the deposition and erosion of particles. Experiments show that the permeability evolution of a porous medium with respect to a particle suspension is not smooth, but rather exhibits significant jumps followed by longer periods of continuous permeability decrease. Their origin seems to be related to internal flow path reorganization by avalanches of deposited material due to erosion inside the porous medium. We apply neutron tomography to resolve the spatiotemporal evolution of the pore space during clogging and unclogging to prove the hypothesis of flow path reorganization behind the permeability jumps. This mechanistic understanding of clogging phenomena is relevant for a number of applications from oil production to filters or suffosion as the mechanisms behind sinkhole formation.  相似文献   

19.
蔡少斌  杨永飞  刘杰 《力学学报》2021,53(8):2225-2234
为了研究深层油气资源在岩石多孔介质内的运移过程, 使用一种基于Darcy-Brinkman-Biot的流固耦合数值方法, 结合传热模型, 完成了Duhamel-Neumann热弹性应力的计算, 实现了在孔隙模拟多孔介质内的考虑热流固耦合作用的两相流动过程. 模型通过求解Navier-Stokes方程完成对孔隙空间内多相流体的计算, 通过求解Darcy方程完成流体在岩石固体颗粒内的计算, 二者通过以动能方式耦合的形式, 计算出岩石固体颗粒质点的位移, 从而实现了流固耦合计算. 在此基础上, 加入传热模型考虑温度场对两相渗流过程的影响. 温度场通过以产生热弹性应力的形式作用于岩石固体颗粒, 总体上实现热流固耦合过程. 基于数值模型, 模拟油水两相流体在二维多孔介质模型内受热流固耦合作用的流动过程. 研究结果表明: 热应力与流固耦合作用产生的应力方向相反, 使得总应力比单独考虑流固耦合作用下的应力小; 温度的增加使得模型孔隙度增加, 但当注入温差达到150 K后, 孔隙度不再有明显增加; 温度的增加使得水相的相对渗流能力增加, 等渗点左移.   相似文献   

20.
A combined analytical?Cnumerical method is presented for the quasisteady axisymmetrical flow of an incompressible viscous fluid past an assemblage of porous eccentric spherical particle-in-cell models. The flow inside the porous particle is governed by the Brinkman model and the flow in the fictitious envelope region is governed by Stokes equations. In order to solve the Stokes equations for the flow field, a general solution is constructed from the superposition of the basic solutions in the two spherical coordinate systems based on both the porous particle and fictitious spherical envelope. Boundary conditions on the particle??s surface and fictitious spherical envelope that correspond to the Happel, Kuwabara, Kvashnin, and Cunningham/Mehta-Morse models are satisfied by a collocation technique. The drag of these eccentric porous particles relative to the drag experienced by a centered porous particle are investigated as functions of the effective distance between the center of the porous particle and the fictitious envelope, the volume ratio of the porous particle over the surrounding sphere and a coefficient that is proportional to the inverse of the permeability. In the limits of the motions of the porous particle in the concentric position with cell surface and near the cell surface with a small curvature, the numerical values of the normalized drag force are in good agreement with the available values in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号