首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
This study investigates numerically the turbulent flow and heat transfer characteristics of a T-junction mixing, where a porous media flow is vertically discharged in a 3D fully developed channel flow. The fluid equations for the porous medium are solved in a pore structure level using an Speziale, Sarkar and Gatski turbulence model and validated with open literature data. Overall, two types of porous structures, consisted of square pores, are investigated over a wide range of Reynolds numbers: an in-line and a staggered pore structure arrangement. The flow patterns, including the reattachment length in the channel, the velocity field inside the porous medium as well as the fluctuation velocity at the interface, are found to be strongly affected by the velocity ratio between the transversely interacting flow streams. In addition, the heat transfer examination of the flow domain reveals that the temperature distribution in the porous structure is more uniform for the staggered array. The local heat transfer distributions inside the porous structure are also studied, and the general heat transfer rates are correlated in terms of area-averaged Nusselt number accounting for the effects of Reynolds number, velocity ratio as well as the geometrical arrangement of the porous structures.  相似文献   

2.
The flow through a channel partially filled with fibrous porous medium was analyzed to investigate the interfacial boundary conditions. The fibrous medium was modeled as a periodic array of circular cylinders, in a hexagonal arrangement, using the boundary element method. The area and volume average methods were applied to relate the pore scale to the representative elementary volume scale. The permeability of the modeled fibrous medium was calculated from the Darcy's law with the volume‐averaged Darcy velocity. The slip coefficient, interfacial velocity, effective viscosity and shear jump coefficients at the interface were obtained with the averaged velocities at various permeabilities or Darcy numbers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
多孔储液介质凭借其独特的孔隙结构可以储存并释放润滑介质,具备良好的自润滑性能. 利用计算流体力学(CFD)方法研究了孔隙深度对多孔储液介质摩擦界面流体压力分布的影响;考虑气-液界面的弯月面力作用,研究了不同孔隙深度的多孔储液介质气-液承载模型以及气-液二相的最小压差分布规律. 基于模拟计算结果,采用3D打印技术制备了不同孔隙深度的多孔储液介质,进一步考察了孔隙深度对其摩擦学性能的影响. CFD模拟结果表明合理设计孔隙深度能够增强多孔储液介质的流体动压润滑效应,孔隙深度较低会使得润滑升力不足,孔隙深度过高又会使得孔隙中流体产生回流循环,削弱楔形效应. 气体进入多孔储液介质摩擦副表面后,在孔隙中形成气-液二相受压承载,其最大承载力随着孔隙深度的增加先升高后趋于平稳,但孔隙深度越小,对润滑作用的积极效果越显著. 摩擦试验表明多孔储液介质的摩擦系数随着孔隙深度的增加呈先降低后增加的趋势,与模拟计算结果一致. 因此合理设计多孔储液介质的孔隙深度,能优化多孔储液介质的润滑性能.   相似文献   

4.
5.
 Fluid flow at the interface of a porous medium and an open channel is the governing phenomenon in a number of processes of industrial importance. Traditionally, this has been modeled by applying the Brinkman’s modification of Darcy’s law to obtain the velocity profile in terms of an additional parameter known as the “apparent viscosity” or the “slip coefficient”. To test this ad hoc approach, a detailed experimental investigation of the flow was conducted using Laser Doppler Anemometry (LDA) in the close vicinity of the permeable boundary of a porous medium. The porous medium used in the experiments consisted of a network of continuous glass strands woven together in a random fashion. A Hele–Shaw cell was partially filled with a fibrous preform such that an open channel flow is coupled with the Darcy flow inside the preform through the permeable interface of the preform. The open channel portion of the Hele–Shaw cell also acts as an ideal porous medium of known in-plane permeability which is much higher than the permeability of the fibrous porous medium. A viscous fluid is injected at a constant flow rate through the above arrangement and a saturated and steady flow is established through the cell. Using LDA, steady state velocity profiles are accurately measured by traversing across the cell in the direction perpendicular to the flow. A series of experiments were conducted in which fluid viscosity, flow rate, solid volume fraction of the porous medium and depth of the Hele–Shaw cell were varied. For each and every case in which the conditions for Hele–Shaw approximation were valid, the depth of the boundary layer zone or the screening length inside the fibrous preform was found to be of the order of the channel depth. This is much larger as compared to the Brinkman’s prediction of the screening length which is of the order of √K, where K is the permeability of the fibrous porous medium. Based on this finding, we modified the boundary condition in the Brinkman’s solution and found that the velocity profile results compared well with the experimental data for the planar geometry and the fibrous preforms for volume fractions of 7%, 14% and 21% for Hele–Shaw cell depths of 1.6 and 3.175 mm. For a cell depth of 4.8 cm, in which the Hele–Shaw approximation was not valid, the boundary layer thickness or the screening length was found to be less than the mold or channel depth but was still much larger than the Brinkman’s prediction. Received: 10 May 1996 / Accepted: 26 August 1996  相似文献   

6.
Recently developed transport equations for two-phase flow through porous media usually have a second term that has been included to account properly for interfacial coupling between the two flowing phases. The source and magnitude of such coupling is not well understood. In this study, a partition concept has been introduced into Kalaydjian's transport equations to construct modified transport equations that enable a better understanding of the role of interfacial coupling in two-phase flow through natural porous media. Using these equations, it is demonstrated that, in natural porous media, the physical origin of interfacial coupling is the capillarity of the porous medium, and not interfacial momentum transfer, as is usually assumed. The new equations are also used to show that, under conditions of steady-state flow, the magnitude of mobilities measured in a countercurrent flow experiment is the same as that measured in a cocurrent flow experiment, contrary to what has been reported previously. Moreover, the new equations are used to explicate the mechanism by which a saturation front steepens in an unstabilized displacement, and to show that the rate at which a wetting fluid is imbibed into a porous medium is controlled by the capillary coupling parameter, . Finally, it is argued that the capillary coupling parameter, , is dependent, at least in part, on porosity. Because a clear understanding of the role played by interfacial coupling is important to an improved understanding of two-phase flow through porous media, the new transport equations should prove to be effective tools for the study of such flow.  相似文献   

7.
In many applications of two-phase flow in porous media, a wetting phase is used to displace through a network of pore conduits as much as possible of a non-wetting phase, residing in situ. The energy efficiency of this physical process may be assessed by the ratio of the flow rate of the non-wetting phase over the total mechanical power externally provided and irreversibly dissipated within the process. Fractional flow analysis, extensive simulations implementing the DeProF mechanistic model, as well as a recent retrospective examination of laboratory studies have revealed universal systematic trends of the energy efficiency in terms of the actual independent variables of the process, namely the capillary number, Ca, and the flow rate ratio, r. These trends can be cast into an energy efficiency map over the (Ca, r) domain of independent variables. The map is universal for all types of non-wetting/wetting phase porous medium systems. It demarcates the efficiency of steady-state two-phase flow processes in terms of pertinent system parameters. The map can be used as a tool for designing more efficient processes, as well as for the normative characterization of two-phase flows, as to the predominance of capillary or viscous effects. This concept is based on the existence of a unique locus of critical flow conditions, for which the energy efficiency takes locally maximum values. The locus shape depends on the physicochemical characteristics of the non-wetting phase/wetting phase/porous medium system, and it shows a significant mutation as the externally imposed flow conditions change the type of flow, from capillary- to viscosity-dominated. The locus can be approached by an S-type functional form in terms of the capillary number and the system properties (viscosity ratio, wettability, pore network geometry, etc.), suggesting that formative criteria can be derived for flow characterization in any system. A new, extended definition of the capillary number is also proposed that effectively takes into account the critical properties of all the system constituents. When loci of critical flow conditions pertaining to processes with different viscosity ratio in the same pore network, are expressed in terms of this true-to-mechanism capillary number, they collapse into a unique locus. In this context, a new methodology for the effective characterization of pore networks is proposed.  相似文献   

8.
The flow of polymer solutions in porous media is often described using Darcy’s law with an apparent viscosity capturing the observed thinning or thickening effects. While the macroscale form is well accepted, the fundamentals of the pore-scale mechanisms, their link with the apparent viscosity, and their relative influence are still a matter of debate. Besides the complex effects associated with the rheology of the bulk fluid, the flow is also deeply influenced by the mechanisms occurring close to the solid/liquid interface, where polymer molecules can arrange and interact in a complex manner. In this paper, we focus on a repulsive mechanism, where polymer molecules are pushed away from the interface, yielding a so-called depletion layer in the vicinity of the wall. This depletion layer acts as a lubricating film that may be represented by an effective slip boundary condition. Here, our goal is to provide a simple mean to evaluate the contribution of this slip effect to the apparent viscosity. To do so, we solve the pore-scale flow numerically in idealized porous media with a slip length evaluated analytically in a tube. Besides its simplicity, the advantage of our approach is also that it captures relatively well the apparent viscosity obtained from core-flood experiments, using only a limited number of inputs. Therefore, it may be useful in many applications to rapidly estimate the influence of the depletion layer effect over the macroscale flow and its relative contribution compared to other phenomena, such as non-Newtonian effects.  相似文献   

9.
Wang  Le  Liu  Yongzhong  Chu  Khim 《Transport in Porous Media》2012,93(3):721-735

For two-phase flows of immiscible displacement processes in porous media, we proposed a simplified model to capture the interfacial fronts, which is given by explicit expressions and satisfies the continuity conditions of pressure and normal velocity across the interface. A new similarity solution for the interfacial evolution in the rectangular coordinate system was derived by postulating a first-order approximation of the velocity distribution in the region that the two-phase fluids co-exist. The interfacial evolution equation can be explicitly expressed as a linear function, where the slope of the interfacial equation is simply related to the mobility ratio of two-phase fluids in porous media. The application of the proposed solutions to predictions of interfacial evolutions in carbon dioxide injected into saline aquifers was illustrated under different mobility ratios and operational parameters. For the purpose of comparison, the numerical solutions obtained by level set method and the similarity solutions based on the Dupuit assumptions were presented. The results show that the proposed solution can give a better approximation of interfacial evolution than the currently available similarity solutions, especially in the situation that the mobility ratio is large. The proposed approximate solutions can provide physical insight into the interfacial phenomenon and be readily used for rapidly screening carbon dioxide storage capacity in subsurface formations and monitoring the migration of carbon dioxide plume.

  相似文献   

10.
In this paper, the macroscopic equations of mass and momentum are developed and discretized based on the smoothed particle hydrodynamics (SPH) formulation for the interaction at an interface of flow with porous media. The theoretical background of flow through porous media is investigated to highlight the key constraints that should be satisfied, particularly at the interface between the porous media flow and the overlying free flow. The study aims to investigate the derivation of the porous flow equations, computation of the porosity, and treatment of the interfacial boundary layer. It addresses weak assumptions that are commonly adopted for interfacial flow simulation in particle-based methods. As support to the theoretical analysis, a two-dimensional weakly compressible SPH model is developed based on the proposed interfacial treatment. The equations in this model are written in terms of the intrinsic averages and in the Lagrangian form. The effect of particle volume change due to the spatial change of porosity is taken into account, and the extra stress terms in the momentum equation are approximated by using Ergun's equation and the subparticle scale model to represent the drag and turbulence effects, respectively. Four benchmark test cases covering a range of flow scenarios are simulated to examine the influence of the porous boundary on the internal, interface, and external flows. The capacity of the modified SPH model to predict velocity distributions and water surface behavior is fully examined with a focus on the flow conditions at the interfacial boundary between the overlying free flow and the underlying porous media.  相似文献   

11.
Transport in Porous Media - The effective slip length at the interface between pure fluid flow and porous media composed of packed spheres has been accurately characterized. In this study, as the...  相似文献   

12.
This paper studies the evolution of a wave pulse during propagation through a porous obstacle located in a gas and saturated with it. The cases of open and closed boundaries of the porous obstacle are considered. The effect of the parameters of the porous medium such as the initial value of the gas volume fraction and pore size and interfacial heat transfer on the evolution of the wave pulse was analyzed.  相似文献   

13.
The problem of unsteady oscillatory flow and heat transfer of porous medin sandwiched between viscous fluids has been considered through a horizontal channel with isothermal wall temperatures. The flow in the porous medium is modeled using the Brinkman equation. The governing partial differential equations are transformed to ordinary differential equations by collecting the non-periodic and periodic terms. Closed-form solutions for each region are found after applying the boundary and interface conditions. The influence of physical parameters, such as the porous parameter, the frequency parameter, the periodic frequency parameter, the viscosity ratios, the conductivity ratios, and the Prandtl number, on the velocity and temperature fields is computed numerically and presented graphically. In addition, the numerical values of the Nusselt number at the top and bottom walls are derived and tabulated.  相似文献   

14.
李勇  钱蔚旻  何录武 《力学季刊》2022,43(1):171-177
在表征体元尺度采用格子Boltzmann方法分析膨胀性非牛顿流体在多孔介质中的流动,基于二阶矩模型在演化方程中引入表征介质阻力的作用力项,求解描述渗流模型的广义Navier-Stokes方程.采用局部法计算形变速率张量,通过循环迭代得到非牛顿粘度和松弛时间.对多孔介质的Poiseuille流动进行分析,通过比较发现结果与孔隙尺度的解析解十分吻合,并且收敛较快,表明方法合理有效.分析了渗透率和幂律指数对速度和压力降的影响,研究结果表明,膨胀性流体的多孔介质流动不符合达西规律,压力降的增加幅度小于渗透率的减小幅度.当无量纲渗透率Da小于10-5时,流道中的速度呈现均匀分布,并且速度分布随着幂律指数的减小趋于平滑.压力降随着幂律指数的增加而增加,Da越大幂律指数对压力降的影响越明显.  相似文献   

15.
We present a finite element (FEM) simulation method for pore geometry fluid flow. Within the pore space, we solve the single-phase Reynold’s lubrication equation—a simplified form of the incompressible Navier–Stokes equation yielding the velocity field in a two-step solution approach. (1) Laplace’s equation is solved with homogeneous boundary conditions and a right-hand source term, (2) pore pressure is computed, and the velocity field obtained for no slip conditions at the grain boundaries. From the computed velocity field, we estimate the effective permeability of porous media samples characterized by section micrographs or micro-CT scans. This two-step process is much simpler than solving the full Navier–Stokes equation and, therefore, provides the opportunity to study pore geometries with hundreds of thousands of pores in a computationally more cost effective manner than solving the full Navier–Stokes’ equation. Given the realistic laminar flow field, dispersion in the medium can also be estimated. Our numerical model is verified with an analytical solution and validated on two 2D micro-CT scans from samples, the permeabilities, and porosities of which were pre-determined in laboratory experiments. Comparisons were also made with published experimental, approximate, and exact permeability data. With the future aim to simulate multiphase flow within the pore space, we also compute the radii and derive capillary pressure from the Young–Laplace’s equation. This permits the determination of model parameters for the classical Brooks–Corey and van-Genuchten models, so that relative permeabilities can be estimated.  相似文献   

16.
Despite the widespread use of the Darcy equation to model porous flow, it is well known that this equation is inconsistent with commonly prescribed no slip conditions at flow domain walls or interfaces between different sections. Therefore, in cases where the wall effects on the flow regime are expected to be significant, the Darcy equation which is only consistent with perfect slip at solid boundaries, cannot predict velocity and pressure profiles properly and alternative models such as the Brinkman equation need to be considered. This paper is devoted to the study of the flow of a Newtonian fluid in a porous medium between two impermeable parallel walls at different Darcy parameters (Da). The flow regime is considered to be isothermal and steady. Three different flow regimes can be considered using the Brinkman equation: free flow (Da > 1), porous flow (high permeability, 1 > Da > 10−6) and porous flow (low permeability Da < 10−6). In the present work the described bench mark problem is used to study the effects of solid walls for a range of low to high Darcy parameters. Both no-slip and slip conditions are considered and the results of these two cases are compared. The range of the applicability of the Brinkman equation and simulated results for different cases are shown.  相似文献   

17.
This paper assesses the spatial resolution and accuracy of tomographic particle image velocimetry (PIV). In tomographic PIV the number of velocity vectors are of the order of the number of reconstructed particle images, and sometimes even exceeds this number when a high overlap fraction between adjacent interrogations is used. This raises the question of the actual spatial resolution of tomographic PIV in relation to the various flow scales. We use a Taylor--Couette flow of a fluid between two independently rotating cylinders and consider three flow regimes: laminar flow, Taylor vortex flow and fully turbulent flow. The laminar flow has no flow structures, and the measurement results are used to assess the measurement uncertainty and to validate the accuracy of the technique for measurements through the curved wall. In the Taylor vortex flow regime, the flow contains large-scale flow structures that are much larger than the size of the interrogation volumes and are fully resolved. The turbulent flow regime contains a range of flow scales. Measurements in the turbulent flow regime are carried out for a Reynolds number Re between 3,800 and 47,000. We use the measured torque on the cylinders to obtain an independent estimate of the energy dissipation rate and estimate of the Kolmogorov length scale. The data obtained by tomographic PIV are assessed by estimating the dissipation rate and comparing the result against the dissipation rate obtained from the measured torque. The turbulent flow data are evaluated for different sizes of the interrogation volumes and for different overlap ratios between adjacent interrogation locations. The results indicate that the turbulent flow measurements for the lowest Re could be (nearly) fully resolved. At the highest Re only a small fraction of the dissipation rate is resolved, still a reasonable estimate of the total dissipation rate could be obtained by means of using a sub-grid turbulence model. The resolution of tomographic PIV in these measurements is determined by the size of the interrogation volume. We propose a range of vector spacing for fully resolving the turbulent flow scales. It is noted that the use of a high overlap ratio, that is, 75?%, yields a substantial improvement for the estimation of the dissipation rate in comparison with data for 0 and 50?% overlap. This indicates that additional information on small-scale velocity gradients can be obtained by reducing the data spacing.  相似文献   

18.
19.
An idealized model of a porous rock consisting of a bundle of capillary tubes whose cross-sections are regular polygons is used to assess the importance of viscous coupling or lubrication during simultaneous oil-water flow. Fluids are nonuniformly distributed over tubes of different characteristic dimension because of the requirements of capillary equilibrium and the effect of interfacial viscosity at oil-water interfaces is considered. With these assumptions, we find that the importance of viscous coupling depends on the rheology of the oil-water interface. Where the interfacial shear viscosity is zero, viscous coupling leading to a dependence of oil relative permeability on oil-water viscosity ratio for viscosity ratios greater than one is important for a range of pore cross-section shapes and pore size distributions. For nonzero interfacial shear viscosity, viscous coupling is reduced. Using values reported in the literature for crude oil-brine systems, we find no viscous coupling.  相似文献   

20.
The basic aim of this work is to present a combination of techniques for the reconstruction of the porous structure and the study of transport properties in porous media. The disordered structure of porous systems like random sphere packing, Vycor glass and North Sea chalk, is represented by three-dimensional binary images. The random sphere pack is generated by a standard ballistic deposition procedure, while the chalk and the Vycor matrices by a stochastic reconstruction technique. The transport properties (Knudsen diffusivity, molecular diffusivity and permeability) of the resulting 3-dimensional binary domains are investigated through computer simulations. Furthermore, physically sound spatial distributions of two phases filling the pore space are determined by the use of a simulated annealing algorithm. The wetting and the non-wetting phases are initially randomly distributed in the pore space and trial-and-error swaps are performed in order to attain the global minimum of the total interfacial energy. The effective diffusivities of the resulting domains are then computed and a parametric study with respect to the pore volume fraction occupied by each phase is performed. Reasonable agreement with available data is obtained in the single- and multi-phase transport cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号